scholarly journals Bilateral tDCS on Primary Motor Cortex: Effects on Fast Arm Reaching Tasks

PLoS ONE ◽  
2016 ◽  
Vol 11 (8) ◽  
pp. e0160063 ◽  
Author(s):  
Pablo Arias ◽  
Yoanna Corral-Bergantiños ◽  
Verónica Robles-García ◽  
Antonio Madrid ◽  
Antonio Oliviero ◽  
...  
2005 ◽  
Vol 94 (4) ◽  
pp. 2353-2378 ◽  
Author(s):  
Lauren E. Sergio ◽  
Catherine Hamel-Pâquet ◽  
John F. Kalaska

We recorded the activity of 132 proximal-arm-related neurons in caudal primary motor cortex (M1) of two monkeys while they generated either isometric forces against a rigid handle or arm movements with a heavy movable handle, in the same eight directions in a horizontal plane. The isometric forces increased in monotonic fashion in the direction of the force target. The forces exerted against the handle in the movement task were more complex, including an initial accelerating force in the direction of movement followed by a transient decelerating force opposite to the direction of movement as the hand approached the target. EMG activity of proximal-arm muscles reflected the difference in task dynamics, showing directional ramplike activity changes in the isometric task and reciprocally tuned “triphasic” patterns in the movement task. The apparent instantaneous directionality of muscle activity, when expressed in hand-centered spatial coordinates, remained relatively stable during the isometric ramps but often showed a large transient shift during deceleration of the arm movements. Single-neuron and population-level activity in M1 showed similar task-dependent changes in temporal pattern and instantaneous directionality. The momentary dissociation of the directionality of neuronal discharge and movement kinematics during deceleration indicated that the activity of many arm-related M1 neurons is not coupled only to the direction and speed of hand motion. These results also demonstrate that population-level signals reflecting the dynamics of motor tasks and of interactions with objects in the environment are available in caudal M1. This task-dynamics signal could greatly enhance the performance capabilities of neuroprosthetic controllers.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Brian M Dekleva ◽  
Pavan Ramkumar ◽  
Paul A Wanda ◽  
Konrad P Kording ◽  
Lee E Miller

Every movement we make represents one of many possible actions. In reaching tasks with multiple targets, dorsal premotor cortex (PMd) appears to represent all possible actions simultaneously. However, in many situations we are not presented with explicit choices. Instead, we must estimate the best action based on noisy information and execute it while still uncertain of our choice. Here we asked how both primary motor cortex (M1) and PMd represented reach direction during a task in which a monkey made reaches based on noisy, uncertain target information. We found that with increased uncertainty, neurons in PMd actually enhanced their representation of unlikely movements throughout both planning and execution. The magnitude of this effect was highly variable across sessions, and was correlated with a measure of the monkeys’ behavioral uncertainty. These effects were not present in M1. Our findings suggest that PMd represents and maintains a full distribution of potentially correct actions.


1998 ◽  
Vol 38 (5) ◽  
pp. 769
Author(s):  
Ho Kyu Lee ◽  
Jin Suh Kim ◽  
Youn Mee Hwang ◽  
Myung Joon Lee ◽  
Soo Mee Lim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document