repetitive motor
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 16)

H-INDEX

13
(FIVE YEARS 2)

2022 ◽  
pp. 113748
Author(s):  
Molly Brady ◽  
Anna Beltramini ◽  
Gavin Vaughan ◽  
Allison R. Bechard

Author(s):  
Heather L. Moore ◽  
Samuel Brice ◽  
Lauren Powell ◽  
Barry Ingham ◽  
Mark Freeston ◽  
...  

AbstractDistress caused by sensory processing differences for autistic individuals may be reduced by repetitive behaviours (RRB), including repetitive motor (RMB) and insistence on sameness (ISB) behaviours. Intolerance of uncertainty (IU) and anxiety mediate the relationship between sensory processing and RRB in autistic children. We replicated this model in autistic adults, extending it to include alexithymia. Serial mediation, using data from 426 autistic adults, identified significant direct effects from sensory processing to RMB and ISB, and indirect effects through alexithymia-IU-anxiety for RMB, and IU alone, and alexithymia-IU for ISB. Different mechanisms may underpin RMB and ISB. Alexithymia alongside, IU and anxiety, should be considered when understanding the relationship between sensory processing and RRB, and when offering interventions to support autistic people.


2021 ◽  
Vol 51 (6) ◽  
pp. 774-783
Author(s):  
N. D. Babanov ◽  
E. A. Biryukova ◽  
E. R. Dzheldubaeva ◽  
S. A. Makhin ◽  
E. N. Chuyan ◽  
...  

2021 ◽  
Vol 11 (10) ◽  
pp. 4330
Author(s):  
Andrea Lucchese ◽  
Salvatore Digiesi ◽  
Kübra Akbaş ◽  
Carlotta Mummolo

The ability of an agent to accomplish a trajectory during a certain motor task depends on the fit between external (environment) and internal (agent) constraints, also known as affordance. A model of difficulty for a generalized reaching motor task is proposed as an affordance-related measure, as perceived by a specific agent for a given environment and task. By extending the information-based Index of Difficulty of a trajectory, a stochastic model of difficulty is formulated based on the observed variability of spatial trajectories executed by a given agent during a repetitive motor task. The model is tested on an experimental walking dataset available in the literature, where the repetitive stride movement of differently aged subjects (14 “old” subjects aged 50–73; 20 “young” subjects aged 21–37) at multiple speed conditions (comfortable, ~30% faster, ~30% slower) is analyzed. Reduced trajectory variability in older as compared to younger adults results in a higher Index of Difficulty (slower: +24%, p < 0.0125; faster: +38%, p < 0.002) which is interpreted in this context as reduced affordance. The model overcomes the limits of existing difficulty measures by capturing the stochastic dependency of task difficulty on a subject’s age and average speed. This model provides a benchmarking tool for motor performance in biomechanics and ergonomics applications.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Robin Sifre ◽  
Daniel Berry ◽  
Jason J. Wolff ◽  
Jed T. Elison

Abstract Background Restricted and repetitive behaviors (RRBs) are core features of autism spectrum disorder (ASD) and one of the earliest behavioral signs of ASD. However, RRBs are also present in typically developing (TD) infants, toddlers, and preschool-aged children. Past work suggests that examining change in these behaviors over time is essential to distinguish between normative manifestations of these behaviors and behaviors that denote risk for a neurodevelopmental disorder. One challenge in examining changes in these behaviors over time is that most measures of RRBs have not established longitudinal measurement invariance. The aims of this study were to (1) establish measurement invariance in the Repetitive Behavior Scales for Early Childhood (RBS-EC), a parent-report questionnaire of RRBs, and (2) model developmental change in RRBs from 8 to 36 months. Methods We collected RBS-EC responses from parents of TD infants (n = 180) from 8 to 36 months (n = 606 responses, with participants contributing an average of 3-time points). We leverage a novel methodological approach to measurement invariance testing (Bauer, Psychological Models, 22(3), 507–526, 2017), moderated nonlinear factor analysis (MNLFA), to determine whether the RBS-EC was invariant across age and sex. We then generated adjusted factor score estimates for each subscale of the RBS-EC (repetitive motor, self-directed, and higher-order behaviors), and used linear mixed effects models to estimate between- and within-person changes in the RBS-EC over time. Results The RBS-EC showed some non-invariance as a function of age. We were able to adjust for this non-invariance in order to more accurately model changes in the RBS-EC over time. Repetitive motor and self-directed behaviors showed a linear decline from 8 to 36 months, while higher-order behaviors showed a quadratic trajectory such that they began to decline later in development at around 18 months. Using adjusted factor scores as opposed to unadjusted raw mean scores provided a number of benefits, including increased within-person variability and precision. Conclusions The RBS-EC is sensitive enough to measure the presence of RRBs in a TD sample, as well as their decline with age. Using factor score estimates of each subscale adjusted for non-invariance allowed us to more precisely estimate change in these behaviors over time.


2020 ◽  
Vol 87 (9) ◽  
pp. S295
Author(s):  
Eric Emmons ◽  
Jian Xu ◽  
Christopher Pittenger

Sign in / Sign up

Export Citation Format

Share Document