Cortical thickness and voxel-based morphometry in posterior cortical atrophy and typical Alzheimer's disease

2011 ◽  
Vol 32 (8) ◽  
pp. 1466-1476 ◽  
Author(s):  
Manja Lehmann ◽  
Sebastian J. Crutch ◽  
Gerard R. Ridgway ◽  
Basil H. Ridha ◽  
Josephine Barnes ◽  
...  
2021 ◽  
Vol 26 (5) ◽  
pp. 16-23
Author(s):  
A. A. Tappakhov ◽  
T. Ya. Nikolaeva ◽  
T. E. Popova ◽  
N. A. Shnayder

Alzheimer’s disease (AD) is the most common cause of dementia in the population. Late onset AD has a classic clinical picture with short-term memory deficit, apraxia and agnosia. Patients with early-onset AD may have an atypical clinical picture which complicates diagnosis. Atypical AD variants include the logopenic variant of primary progressive aphasia, posterior cortical atrophy, behavioral, biparietal, and cortico-basal variants. These variants have pathomorphological signs similar to classical AD, but at an early stage they are characterized by focal atrophy which explains their clinical polymorphism. This article provides a review of the current literature on atypical types of AD and presents a clinical case of a 62-year-old patient in whom the disease debuted with prosopagnosia due to focal atrophy of the temporo-occipital regions of the non-dominant hemisphere.


2015 ◽  
Vol 11 (7S_Part_6) ◽  
pp. P274-P274 ◽  
Author(s):  
Keir X.X. Yong ◽  
Catherine Holloway ◽  
Amelia Carton ◽  
Biao Yang ◽  
Tatsuto Suzuki ◽  
...  

2018 ◽  
Vol 10 (2) ◽  
Author(s):  
Michael A. Meyer ◽  
Stephen A. Hudock

Posterior cortical atrophy is a rare condition first described in 1988 involving progressive degeneration and atrophy of the occipital cortex, often recognized after an unexplained homonymous hemianopsia may be discovered. We report a case in association with Alzheimer’s disease in a 77-year-old female, who underwent brain single-photon emission computed tomography as well brain positron emission tomography using Florbetapir to further evaluate progressive cognitive decline. The patient had also been followed in Ophthalmology for glaucoma, where a progressive unexplained change in her visual field maps were noted over one year consistent with a progressive right homonymous hemianopsia. This rare combination of findings in association with her dementia led to a detailed review of all her imaging studies, concluding with the surprising recognition for a clear hemi-atrophy of the primary left occipital cortex was occurring, consistent with Alzheimer’s disease affecting the primary visual cortex. Further awareness of this disease pattern is needed, as Alzheimer’s disease typically does not affect the primary visual cortex; other conditions to consider in general include Lewy Body dementia, cortico-basal degeneration and prion disease.


2020 ◽  
Vol 30 (5) ◽  
pp. 2948-2960 ◽  
Author(s):  
Nicholas M Vogt ◽  
Jack F Hunt ◽  
Nagesh Adluru ◽  
Douglas C Dean ◽  
Sterling C Johnson ◽  
...  

Abstract In Alzheimer’s disease (AD), neurodegenerative processes are ongoing for years prior to the time that cortical atrophy can be reliably detected using conventional neuroimaging techniques. Recent advances in diffusion-weighted imaging have provided new techniques to study neural microstructure, which may provide additional information regarding neurodegeneration. In this study, we used neurite orientation dispersion and density imaging (NODDI), a multi-compartment diffusion model, in order to investigate cortical microstructure along the clinical continuum of mild cognitive impairment (MCI) and AD dementia. Using gray matter-based spatial statistics (GBSS), we demonstrated that neurite density index (NDI) was significantly lower throughout temporal and parietal cortical regions in MCI, while both NDI and orientation dispersion index (ODI) were lower throughout parietal, temporal, and frontal regions in AD dementia. In follow-up ROI analyses comparing microstructure and cortical thickness (derived from T1-weighted MRI) within the same brain regions, differences in NODDI metrics remained, even after controlling for cortical thickness. Moreover, for participants with MCI, gray matter NDI—but not cortical thickness—was lower in temporal, parietal, and posterior cingulate regions. Taken together, our results highlight the utility of NODDI metrics in detecting cortical microstructural degeneration that occurs prior to measurable macrostructural changes and overt clinical dementia.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Jurre den Haan ◽  
Lajos Csinscik ◽  
Tom Parker ◽  
Ross W. Paterson ◽  
Catherine F. Slattery ◽  
...  

2011 ◽  
Vol 7 ◽  
pp. S317-S317
Author(s):  
Leonardo de Souza ◽  
Fabian Corlier ◽  
Marie Odile Habert ◽  
Olga Uspenskaya ◽  
Renaud Maroy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document