scholarly journals Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition

NeuroImage ◽  
2010 ◽  
Vol 53 (1) ◽  
pp. 303-317 ◽  
Author(s):  
R. Nathan Spreng ◽  
W. Dale Stevens ◽  
Jon P. Chamberlain ◽  
Adrian W. Gilmore ◽  
Daniel L. Schacter
2019 ◽  
Vol 3 (12) ◽  
pp. 1263-1270 ◽  
Author(s):  
Julia W. Y. Kam ◽  
Jack J. Lin ◽  
Anne-Kristin Solbakk ◽  
Tor Endestad ◽  
Pål G. Larsson ◽  
...  

2016 ◽  
Author(s):  
Matthew L. Dixon ◽  
Jessica R. Andrews-Hanna ◽  
R. Nathan Spreng ◽  
Zachary C. Irving ◽  
Kalina Christoff

SummaryAnticorrelation between the default network (DN) and dorsal attention network (DAN) is thought to be an intrinsic aspect of functional brain organization reflecting competing functions. However, the stability of anticorrelations across distinct DN subsystems, different contexts, and time, remains unexplored. Here we examine DN-DAN functional connectivity across six different cognitive states. We show that:(i) the DAN is anticorrelated with the DN core subsystem, but not with the two DN subsystems involved in mentalizing and mnemonic functions, respectively; (ii) DN-DAN interactions vary significantly across cognitive states; (iii) DN-DAN connectivity fluctuates across time between periods of anticorrelation and periods of positive correlation; and (iv) coupling between the frontoparietal control network (FPCN) and DAN predicts variation in the strength of DN-DAN anticorrelation across time. These findings reveal substantial variability in DN-DAN interactions, suggesting that these networks are not strictly competitive, and that the FPCN may act to modulate their anticorrelation strength.


2015 ◽  
Vol 21 (4) ◽  
pp. 271-284 ◽  
Author(s):  
Hsiang-Yuan Lin ◽  
Wen-Yih Isaac Tseng ◽  
Meng-Chuan Lai ◽  
Kayako Matsuo ◽  
Susan Shur-Fen Gau

AbstractThe frontoparietal control network, anatomically and functionally interposed between the dorsal attention network and default mode network, underpins executive control functions. Individuals with attention-deficit/hyperactivity disorder (ADHD) commonly exhibit deficits in executive functions, which are mainly mediated by the frontoparietal control network. Involvement of the frontoparietal control network based on the anterior prefrontal cortex in neurobiological mechanisms of ADHD has yet to be tested. We used resting-state functional MRI and seed-based correlation analyses to investigate functional connectivity of the frontoparietal control network in a sample of 25 children with ADHD (7–14 years; mean 9.94±1.77 years; 20 males), and 25 age-, sex-, and performance IQ-matched typically developing (TD) children. All participants had limited in-scanner head motion. Spearman’s rank correlations were used to test the associations between altered patterns of functional connectivity with clinical symptoms and executive functions, measured by the Conners’ Continuous Performance Test and Spatial Span in the Cambridge Neuropsychological Test Automated Battery. Compared with TD children, children with ADHD demonstrated weaker connectivity between the right anterior prefrontal cortex (PFC) and the right ventrolateral PFC, and between the left anterior PFC and the right inferior parietal lobule. Furthermore, this aberrant connectivity of the frontoparietal control network in ADHD was associated with symptoms of impulsivity and opposition-defiance, as well as impaired response inhibition and attentional control. The findings support potential integration of the disconnection model and the executive dysfunction model for ADHD. Atypical frontoparietal control network may play a pivotal role in the pathophysiology of ADHD. (JINS, 2015, 21, 271–284)


2010 ◽  
Vol 22 (3) ◽  
pp. 513-525 ◽  
Author(s):  
Sarah L. Israel ◽  
Tyler M. Seibert ◽  
Michelle L. Black ◽  
James B. Brewer

Hippocampal activity is modulated during episodic memory retrieval. Most consistently, a relative increase in activity during confident retrieval is observed. Dorsolateral prefrontal cortex (DLPFC) is also activated during retrieval, but may be more generally activated during cognitive-control processes. The “default network,” regions activated during rest or internally focused tasks, includes the hippocampus, but not DLPFC. Therefore, DLPFC and the hippocampus should diverge during difficult tasks suppressing the default network. It is unclear, however, whether a difficult episodic memory retrieval task would suppress the default network due to difficulty or activate it due to internally directed attention. We hypothesized that a task requiring episodic retrieval followed by rumination on the retrieved item would increase DLPFC activity, but paradoxically reduce hippocampal activity due to concomitant suppression of the default network. In the present study, blocked and event-related fMRI were used to examine hippocampal activity during episodic memory recollection and postretrieval processing of paired associates. Subjects were asked to make living/nonliving judgments about items visually presented (classify) or items retrieved from memory (recall–classify). Active and passive baselines were used to differentiate task-related activity from default-network activity. During the “recall–classify” task, anterior hippocampal activity was selectively reduced relative to “classify” and baseline tasks, and this activity was inversely correlated with DLPFC. Reaction time was positively correlated with DLPFC activation and default-network/hippocampal suppression. The findings demonstrate that frontal and hippocampal activity are dissociated during difficult episodic retrieval tasks and reveal important considerations for interpreting hippocampal activity associated with successful episodic retrieval.


2015 ◽  
Vol 11 (7S_Part_1) ◽  
pp. P53-P53
Author(s):  
Hwamee Oh ◽  
Jason Steffener ◽  
Ray Razlighi ◽  
Christian Habeck ◽  
Dan Liu ◽  
...  

Obesity ◽  
2011 ◽  
Vol 19 (12) ◽  
pp. 2316-2321 ◽  
Author(s):  
Jason R. Tregellas ◽  
Korey P. Wylie ◽  
Donald C. Rojas ◽  
Jody Tanabe ◽  
Jesse Martin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document