scholarly journals Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex

Neuron ◽  
2012 ◽  
Vol 76 (5) ◽  
pp. 1030-1041 ◽  
Author(s):  
Qian Li ◽  
Ya Ke ◽  
Danny C.W. Chan ◽  
Zhong-Ming Qian ◽  
Ken K.L. Yung ◽  
...  
2020 ◽  
Vol 68 (8) ◽  
pp. 235
Author(s):  
Patrick Senatus ◽  
Sarah Zurek ◽  
Milind Deogaonkar

Neurosurgery ◽  
2015 ◽  
Vol 76 (6) ◽  
pp. 766-776 ◽  
Author(s):  
Marie-Therese Forster ◽  
Alexander Claudius Hoecker ◽  
Jun-Suk Kang ◽  
Johanna Quick ◽  
Volker Seifert ◽  
...  

AbstractBACKGROUND:Tractography based on diffusion tensor imaging has become a popular tool for delineating white matter tracts for neurosurgical procedures.OBJECTIVE:To explore whether navigated transcranial magnetic stimulation (nTMS) might increase the accuracy of fiber tracking.METHODS:Tractography was performed according to both anatomic delineation of the motor cortex (n = 14) and nTMS results (n = 9). After implantation of the definitive electrode, stimulation via the electrode was performed, defining a stimulation threshold for eliciting motor evoked potentials recorded during deep brain stimulation surgery. Others have shown that of arm and leg muscles. This threshold was correlated with the shortest distance between the active electrode contact and both fiber tracks. Results were evaluated by correlation to motor evoked potential monitoring during deep brain stimulation, a surgical procedure causing hardly any brain shift.RESULTS:Distances to fiber tracks clearly correlated with motor evoked potential thresholds. Tracks based on nTMS had a higher predictive value than tracks based on anatomic motor cortex definition (P < .001 and P = .005, respectively). However, target site, hemisphere, and active electrode contact did not influence this correlation.CONCLUSION:The implementation of tractography based on nTMS increases the accuracy of fiber tracking. Moreover, this combination of methods has the potential to become a supplemental tool for guiding electrode implantation.


2010 ◽  
Vol 2;13 (1;2) ◽  
pp. 157-165
Author(s):  
Timothy R. Deer

Intracranial neurostimulation for pain relief is most frequently delivered by stimulating the motor cortex, the sensory thalamus, or the periaqueductal and periventricular gray matter. The stimulation of these sites through MCS (motor cortex stimulation) and DBS (deep brain stimulation) has proven effective for treating a number of neuropathic and nociceptive pain states that are not responsive or amenable to other therapies or types of neurostimulation. Prospective randomized clinical trials to confirm the efficacy of these intracranial therapies have not been published. Intracranial neurostimulation is somewhat different than other forms of neurostimulation in that its current primary application is for the treatment of medically intractable movement disorders. However, the increasing use of intracranial neurostimulation for the treatment of chronic pain, especially for pain not responsive to other neuromodulation techniques, reflects the efficacy and relative safety of these intracranial procedures. First employed in 1954, intracranial neurostimulation represents one of the earliest uses of neurostimulation to treat chronic pain that is refractory to medical therapy. Currently, 2 kinds of intracranial neurostimulation are commonly used to control pain: motor cortex stimulation and deep brain stimulation. MCS has shown particular promise in the treatment of trigeminal neuropathic pain and central pain syndromes such as thalamic pain syndrome. DBS may be employed for a number of nociceptive and neuropathic pain states, including cluster headaches, chronic low back pain, failed back surgery syndrome, peripheral neuropathic pain, facial deafferentation pain, and pain that is secondary to brachial plexus avulsion. The unique lack of stimulation-induced perceptual experience with MCS makes MCS uniquely suited for blinded studies of its effectiveness. This article will review the scientific rationale, indications, surgical techniques, and outcomes of intracranial neuromodulation procedures for the treatment of chronic pain. Key words: Motor cortex stimulation, deep brain stimulation, pain, neurostimulation


2018 ◽  
Vol 38 (19) ◽  
pp. 4556-4568 ◽  
Author(s):  
Doris D. Wang ◽  
Coralie de Hemptinne ◽  
Svjetlana Miocinovic ◽  
Jill L. Ostrem ◽  
Nicholas B. Galifianakis ◽  
...  

2021 ◽  
pp. 113825
Author(s):  
Vinith Johnson ◽  
Robert Wilt ◽  
Roee Gilron ◽  
Juan Anso ◽  
Randy Perrone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document