scholarly journals Role of presynaptic metabotropic glutamate receptors in the induction of long-term synaptic plasticity of vesicular release

2013 ◽  
Vol 66 ◽  
pp. 31-39 ◽  
Author(s):  
Chirag Upreti ◽  
Xiao-lei Zhang ◽  
Simon Alford ◽  
Patric K. Stanton
eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ananya Dasgupta ◽  
Yu Jia Lim ◽  
Krishna Kumar ◽  
Nimmi Baby ◽  
Ka Lam Karen Pang ◽  
...  

Metabotropic glutamate receptors (mGluRs) play an important role in synaptic plasticity and memory and are largely classified based on amino acid sequence homology and pharmacological properties. Among group III metabotropic glutamate receptors, mGluR7 and mGluR4 show high relative expression in the rat hippocampal area CA2. Group III metabotropic glutamate receptors are known to down-regulate cAMP-dependent signaling pathways via the activation of Gi/o proteins. Here, we provide evidence that inhibition of group III mGluRs by specific antagonists permits an NMDA receptor- and protein synthesis-dependent long-lasting synaptic potentiation in the apparently long-term potentiation (LTP)-resistant Schaffer collateral (SC)-CA2 synapses. Moreover, long-lasting potentiation of these synapses transforms a transient synaptic potentiation of the entorhinal cortical (EC)-CA2 synapses into a stable long-lasting LTP, in accordance with the synaptic tagging/capture hypothesis (STC). Furthermore, this study also sheds light on the role of ERK/MAPK protein signaling and the downregulation of STEP protein in the group III mGluR inhibition-mediated plasticity in the hippocampal CA2 region, identifying them as critical molecular players. Thus, the regulation of group III mGluRs provides a conducive environment for the SC-CA2 synapses to respond to events that could lead to activity-dependent synaptic plasticity.


2021 ◽  
Vol 10 (7) ◽  
pp. 1475
Author(s):  
Waldemar Kryszkowski ◽  
Tomasz Boczek

Schizophrenia is a severe neuropsychiatric disease with an unknown etiology. The research into the neurobiology of this disease led to several models aimed at explaining the link between perturbations in brain function and the manifestation of psychotic symptoms. The glutamatergic hypothesis postulates that disrupted glutamate neurotransmission may mediate cognitive and psychosocial impairments by affecting the connections between the cortex and the thalamus. In this regard, the greatest attention has been given to ionotropic NMDA receptor hypofunction. However, converging data indicates metabotropic glutamate receptors as crucial for cognitive and psychomotor function. The distribution of these receptors in the brain regions related to schizophrenia and their regulatory role in glutamate release make them promising molecular targets for novel antipsychotics. This article reviews the progress in the research on the role of metabotropic glutamate receptors in schizophrenia etiopathology.


2003 ◽  
Vol 138 (8) ◽  
pp. 1417-1424 ◽  
Author(s):  
Hui-Fang Li ◽  
Meng-Ya Wang ◽  
Jessica Knape ◽  
Joan J Kendig

Sign in / Sign up

Export Citation Format

Share Document