The endocannabinoid system impacts seizures in a mouse model of Dravet syndrome

2021 ◽  
pp. 108897
Author(s):  
Lyndsey L. Anderson ◽  
Peter T. Doohan ◽  
Nicole A. Hawkins ◽  
Dilara Bahceci ◽  
Ganesh A. Thakur ◽  
...  
2021 ◽  
Vol 13 ◽  
Author(s):  
Valentina Satta ◽  
Cristina Alonso ◽  
Paula Díez ◽  
Soraya Martín-Suárez ◽  
Marta Rubio ◽  
...  

Dravet syndrome (DS) is an epileptic syndrome caused by mutations in the Scn1a gene encoding the α1 subunit of the sodium channel Nav1.1, which is associated with febrile seizures that progress to severe tonic-clonic seizures and associated comorbidities. Treatment with cannabidiol has been approved to reduce seizures in DS, but it may also be active against these comorbidities. The aim of this study was to validate a new mouse model of DS having lower mortality than previous models, which may serve to further evaluate therapies for the long-term comorbidities. This new model consists of heterozygous conditional knock-in mice carrying a missense mutation (A1783V) in Scn1a gene expressed exclusively in neurons of the CNS (Syn-Cre/Scn1aWT/A1783V). These mice have been used here to determine the extent and persistence of the behavioral deterioration in different postnatal days (PND), as well as to investigate the alterations that the disease produces in the endocannabinoid system and the contribution of inflammatory events and impaired neurogenesis in the pathology. Syn-Cre/Scn1aWT/A1783V mice showed a strong reduction in hindlimb grasp reflex at PND10, whereas at PND25, they presented spontaneous convulsions and a greater susceptibility to pentylenetetrazole-induced seizures, marked hyperactivity, deficient spatial working memory, lower levels of anxiety, and altered social interaction behavior. These differences disappeared at PND40 and PND60, except the changes in social interaction and anxiety. The analysis of CNS structures associated with these behavioral alterations revealed an elevated glial reactivity in the prefrontal cortex and the dentate gyrus. This was associated in the dentate gyrus with a greater cell proliferation detected with Ki67 immunostaining, whereas double-labeling analyses identified that proliferating cells were GFAP-positive suggesting failed neurogenesis but astrocyte proliferation. The analysis of the endocannabinoid system of Syn-Cre/Scn1aWT/A1783V mice confirmed reductions in CB1 receptors and MAGL and FAAH enzymes, mainly in the cerebellum but also in other areas, whereas CB2 receptors became upregulated in the hippocampus. In conclusion, Syn-Cre/Scn1aWT/A1783V mice showed seizuring susceptibility and several comorbidities (hyperactivity, memory impairment, less anxiety, and altered social behavior), which exhibited a pattern of age expression similar to DS patients. Syn-Cre/Scn1aWT/A1783V mice also exhibited greater glial reactivity and a reactive response in the neurogenic niche, and regional changes in the status of the endocannabinoid signaling, events that could contribute in behavioral impairment.


2020 ◽  
Vol 103 ◽  
pp. 106842
Author(s):  
Dilara Bahceci ◽  
Lyndsey Leigh Anderson ◽  
Cassandra Veronica Occelli Hanbury Brown ◽  
Cilla Zhou ◽  
Jonathon Carl Arnold

2016 ◽  
Vol 26 ◽  
pp. S251 ◽  
Author(s):  
V. Satta ◽  
M. Rubio ◽  
S. Valdeolivas ◽  
F. Piscitelli ◽  
R. Verde ◽  
...  

Epilepsia ◽  
2021 ◽  
Author(s):  
Nina Miljanovic ◽  
Roelof Maarten van Dijk ◽  
Verena Buchecker ◽  
Heidrun Potschka

2019 ◽  
Vol 597 (16) ◽  
pp. 4293-4307 ◽  
Author(s):  
Toshihiro Nomura ◽  
Nicole A. Hawkins ◽  
Jennifer A. Kearney ◽  
Alfred L. George ◽  
Anis Contractor
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Vaishali Satpute Janve ◽  
Lyndsey L. Anderson ◽  
Dilara Bahceci ◽  
Nicole A. Hawkins ◽  
Jennifer A. Kearney ◽  
...  

Cannabidiol has been approved for the treatment of drug-resistant childhood epilepsies including Dravet syndrome (DS). Although the mechanism of anticonvulsant action of cannabidiol is unknown, emerging data suggests involvement of the transient receptor potential cation channel subfamily V member 1 (Trpv1). Pharmacological and genetic studies in conventional seizure models suggest Trpv1 is a novel anticonvulsant target. However, whether targeting Trpv1 is anticonvulsant in animal models of drug-resistant epilepsies is not known. Thus, we examined whether Trpv1 affects the epilepsy phenotype of the F1.Scn1a+/− mouse model of DS. We found that cortical Trpv1 mRNA expression was increased in seizure susceptible F1.Scn1a+/− mice with a hybrid genetic background compared to seizure resistant 129.Scn1a+/− mice isogenic on 129S6/SvEvTac background, suggesting Trpv1 could be a genetic modifier. Previous studies show functional loss of Trpv1 is anticonvulsant. However, Trpv1 selective antagonist SB-705498 did not affect hyperthermia-induced seizure threshold, frequency of spontaneous seizures or survival of F1.Scn1a+/− mice. Surprisingly, Trpv1 deletion had both pro- and anti-seizure effects. Trpv1 deletion did not affect hyperthermia-induced seizure temperature thresholds of F1.Scn1a+/−; Trpv1+/− at P14-16 but was proconvulsant at P18 as it reduced seizure temperature thresholds. Conversely, Trpv1 deletion did not alter the frequency of spontaneous seizures but reduced their severity. These results suggest that Trpv1 is a modest genetic modifier of spontaneous seizure severity in the F1.Scn1a+/− model of DS. However, the opposing pro- and anti-seizure effects of Trpv1 deletion and the lack of effects of Trpv1 inhibition suggest that Trpv1 is unlikely a viable anticonvulsant drug target in DS.


2019 ◽  
Vol 6 (8) ◽  
pp. 1566-1571 ◽  
Author(s):  
Jennifer C. Wong ◽  
Jacquelyn T. Thelin ◽  
Andrew Escayg
Keyword(s):  

2019 ◽  
Vol 82 (11) ◽  
pp. 3047-3055 ◽  
Author(s):  
Lyndsey L. Anderson ◽  
Ivan K. Low ◽  
Samuel D. Banister ◽  
Iain S. McGregor ◽  
Jonathon C. Arnold

Sign in / Sign up

Export Citation Format

Share Document