Involvement of the bed nucleus of the stria terminalis activated by the central nucleus of the amygdala in the negative affective component of morphine withdrawal in rats

Neuroscience ◽  
2005 ◽  
Vol 134 (1) ◽  
pp. 9-19 ◽  
Author(s):  
T. Nakagawa ◽  
R. Yamamoto ◽  
M. Fujio ◽  
Y. Suzuki ◽  
M. Minami ◽  
...  
2008 ◽  
Vol 294 (1) ◽  
pp. R52-R57 ◽  
Author(s):  
Shalini Saggu ◽  
Robert F. Lundy

Evidence suggests that GABA might mediate the inhibitory influence of centrifugal inputs on taste-evoked responses in the parabrachial nucleus (PBN). Previous studies show that activation of the gustatory cortex (GC), bed nucleus of the stria terminalis (BNST), central nucleus of the amygdala (CeA), and lateral hypothalamus (LH) inhibits PBN taste responses, GABAergic neurons are present in these forebrain regions, and GABA reduces the input resistance of PBN neurons. The present study investigated the expression of glutamic acid decarboxylase immunoreactivity (GAD_67 ir) in GC, BNST, CeA, and LH neurons that project to the PBN in rats. After anesthesia (50 mg/kg ip Nembutal), injections of the retrograde tracer Fluorogold (FG) were made in the physiologically defined gustatory PBN. Brain tissue containing the above forebrain structures was processed and examined for FG and GAD_67 ir. Similar to previous studies, each forebrain site contained retrogradely labeled neurons. Our results suggest further that the major source of input to the PBN taste region is the CeA (608 total cells) followed by GC (257 cells), LH (106 cells), and BNST (92 cells). This suggests a differential contribution to centrifugal control of PBN taste processing. We further show that despite the presence of GAD_67 neurons in each forebrain area, colocalization was extremely rare, occurring only in 3 out of 1,063 FG-labeled cells. If we assume that the influence of centrifugal input is mediated by direct projections to the gustatory region of the PBN, then GABAergic forebrain neurons apparently are not part of this descending pathway.


2018 ◽  
Author(s):  
Brennon R. Luster ◽  
Elizabeth S. Cogan ◽  
Karl T. Schmidt ◽  
Dipanwita Pati ◽  
Melanie M. Pina ◽  
...  

AbstractThe United States is experiencing an opioid epidemic of significant proportions, imposing enormous fiscal and societal costs. While prescription opioid analgesics are essential for treating pain, the cessation of these drugs can induce a withdrawal syndrome, and thus opioid use often persists to alleviate or avoid these symptoms. Therefore, it is essential to understand the neurobiology underlying this critical window of withdrawal from opioid analgesics to prevent continued usage. To model this, we administered a low dose of morphine, and precipitated withdrawal with naloxone to investigate the behavioral and cellular responses in C57BL/6J male and female mice. Following 3 days of administration, both male and female mice sensitized to the repeated bouts of withdrawal, as evidenced by their composite global withdrawal score. Female mice exhibited increased withdrawal symptoms on some individual measures, but did not show characteristic weight loss observed in male mice. Because of its role in mediating withdrawal-associated behaviors, we examined neuronal excitability and inhibitory synaptic transmission in the bed nucleus of the stria terminalis (BNST) 24 hours following the final precipitated withdrawal. In male mice, morphine withdrawal increased spontaneous GABAergic signaling compared to controls. In contrast, morphine withdrawal decreased spontaneous GABAergic signaling, and increased BNST projection neuron excitability in female mice. Intriguingly, these opposing GABAergic effects were dependent on within slice excitability. Our findings suggest that male and female mice manifest divergent cellular responses in the BNST following morphine withdrawal, and alterations in BNST inhibitory signaling may be a significant factor contributing to the expression of behaviors following opioid withdrawal.


Sign in / Sign up

Export Citation Format

Share Document