scholarly journals Neuronal degeneration is observed in multiple regions outside the hippocampus after lithium pilocarpine-induced status epilepticus in the immature rat

Neuroscience ◽  
2013 ◽  
Vol 252 ◽  
pp. 45-59 ◽  
Author(s):  
E.A. Scholl ◽  
F.E. Dudek ◽  
J.J. Ekstrand
2012 ◽  
Vol 1475 ◽  
pp. 116 ◽  
Author(s):  
André Luiz do Nascimento ◽  
Neide Ferreira dos Santos ◽  
Fernanda Campos Pelágio ◽  
Simone Aparecida Teixeira ◽  
Elenice A. de Moraes Ferrari ◽  
...  

2019 ◽  
Vol 21 (1) ◽  
pp. 181 ◽  
Author(s):  
Maheedhar Kodali ◽  
Olagide W. Castro ◽  
Dong-Ki Kim ◽  
Alicia Thomas ◽  
Bing Shuai ◽  
...  

Extracellular vesicles (EVs) derived from human bone marrow mesenchymal stem cells (hMSCs) have great promise as biologics to treat neurological and neurodegenerative conditions due to their robust antiinflammatory and neuroprotective properties. Besides, intranasal (IN) administration of EVs has caught much attention because the procedure is noninvasive, amenable for repetitive dispensation, and leads to a quick penetration of EVs into multiple regions of the forebrain. Nonetheless, it is unknown whether brain injury-induced signals are essential for the entry of IN-administered EVs into different brain regions. Therefore, in this study, we investigated the distribution of IN-administered hMSC-derived EVs into neurons and microglia in the intact and status epilepticus (SE) injured rat forebrain. Ten billion EVs labeled with PKH26 were dispensed unilaterally into the left nostril of naïve rats, and rats that experienced two hours of kainate-induced SE. Six hours later, PKH26 + EVs were quantified from multiple forebrain regions using serial brain sections processed for different neural cell markers and confocal microscopy. Remarkably, EVs were seen bilaterally in virtually all regions of intact and SE-injured forebrain. The percentage of neurons incorporating EVs were comparable for most forebrain regions. However, in animals that underwent SE, a higher percentage of neurons incorporated EVs in the hippocampal CA1 subfield and the entorhinal cortex, the regions that typically display neurodegeneration after SE. In contrast, the incorporation of EVs by microglia was highly comparable in every region of the forebrain measured. Thus, unilateral IN administration of EVs is efficient for delivering EVs bilaterally into neurons and microglia in multiple regions in the intact or injured forebrain. Furthermore, incorporation of EVs by neurons is higher in areas of brain injury, implying that injury-related signals likely play a role in targeting of EVs into neurons, which may be beneficial for EV therapy in various neurodegenerative conditions including traumatic brain injury, stroke, multiple sclerosis, and Alzheimer’s disease.


1984 ◽  
Vol 307 (1-2) ◽  
pp. 117-124 ◽  
Author(s):  
Howard X. Steiner ◽  
Gethin J. McBean ◽  
Christer Ko¨hler ◽  
Peter J. Roberts ◽  
Robert Schwarcz

2012 ◽  
Vol 1470 ◽  
pp. 98-110 ◽  
Author(s):  
André Luiz do Nascimento ◽  
Neide Ferreira dos Santos ◽  
Fernanda Campos Pelágio ◽  
Simone Aparecida Teixeira ◽  
Elenice A. de Moraes Ferrari ◽  
...  

1999 ◽  
Vol 48 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Hana Kubová ◽  
Rastislav Druga ◽  
Renata Haugvicová ◽  
Markéta Škutová ◽  
Pavel Mareš

Sign in / Sign up

Export Citation Format

Share Document