scholarly journals Sustained Maximal Voluntary Contractions Elicit Different Neurophysiological Responses in Upper- and Lower-Limb Muscles in Men

Neuroscience ◽  
2019 ◽  
Vol 422 ◽  
pp. 88-98 ◽  
Author(s):  
John Temesi ◽  
Gianluca Vernillo ◽  
Matthieu Martin ◽  
Renata L. Krüger ◽  
Chris J. McNeil ◽  
...  
Author(s):  
Akira Saito ◽  
Kento Nakagawa ◽  
Yohei Masugi ◽  
Kimitaka Nakazawa

AbstractAlthough voluntary muscle contraction modulates spinal reflex excitability of contracted muscles and other muscles located at other segments within a limb (i.e., intra-limb modulation), to what extent corticospinal pathways are involved in intra-limb modulation of spinal reflex circuits remains unknown. The purpose of the present study was to identify differences in the involvement of corticospinal pathways in intra-limb modulation of spinal reflex circuits among lower-limb muscles during voluntary contractions. Ten young males performed isometric plantar-flexion, dorsi-flexion, knee extension, and knee flexion at 10% of each maximal torque. Electromyographic activity was recorded from soleus, tibialis anterior, vastus lateralis, and biceps femoris muscles. Motor evoked potentials and posterior root-muscle reflexes during rest and isometric contractions were elicited from the lower-limb muscles using transcranial magnetic stimulation and transcutaneous spinal cord stimulation, respectively. Motor evoked potential and posterior root-muscle reflex amplitudes of soleus during knee extension were significantly increased compared to rest. The motor evoked potential amplitude of biceps femoris during dorsi-flexion was significantly increased, whereas the posterior root-muscle reflex amplitude of biceps femoris during dorsi-flexion was significantly decreased compared to rest. These results suggest that corticospinal and spinal reflex excitabilities of soleus are facilitated during knee extension, whereas intra-limb modulation of biceps femoris during dorsi-flexion appeared to be inverse between corticospinal and spinal reflex circuits.


2008 ◽  
Vol 105 (5) ◽  
pp. 1527-1532 ◽  
Author(s):  
T. Oya ◽  
B. W. Hoffman ◽  
A. G. Cresswell

This study investigated corticospinal-evoked responses in lower limb muscles during voluntary contractions at varying strengths. Similar investigations have been made on upper limb muscles, where evoked responses have been shown to increase up to ∼50% of maximal force and then decline. We elicited motor-evoked potentials (MEPs) and cervicomedullary motor-evoked potentials (CMEPs) in the soleus (Sol) and medial gastrocnemius (MG) muscles using magnetic stimulation over the motor cortex and cervicomedullary junction during voluntary plantar flexions with the torque ranging from 0 to 100% of a maximal voluntary contraction. Differences between the MEP and CMEP were also investigated to assess whether any changes were occurring at the cortical or spinal levels. In both Sol and MG, MEP and CMEP amplitudes [normalized to maximal M wave (Mmax)] showed an increase, followed by a plateau, over the greater part of the contraction range with responses increasing from ∼0.2 to ∼6% of Mmax for Sol and from ∼0.3 to ∼10% of Mmax for MG. Because both MEPs and CMEPs changed in a similar manner, the observed increase and lack of decrease at high force levels are likely related to underlying changes occurring at the spinal level. The evoked responses in the Sol and MG increase over a greater range of contraction strengths than for upper limb muscles, probably due to differences in the pattern of motor unit recruitment and rate coding for these muscles and the strength of the corticospinal input.


2004 ◽  
Vol 29 (6) ◽  
pp. 834-842 ◽  
Author(s):  
Gabrielle Todd ◽  
Robert B. Gorman ◽  
Simon C. Gandevia

QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Rasha M Ibrahim ◽  
Haitham M Hamdy ◽  
Amr A Mohammed ◽  
Ahmed M Elsadek ◽  
Ahmed M Bassiouny ◽  
...  

Abstract Background Limb-girdle muscular dystrophies (LGMDs) are a clinically and genetically heterogeneous group of disorders characterized by progressive muscle weakness and degenerative muscle changes. Studies have shown that ultrasound can be useful both for diagnosis and follow-up of LGMDs patients. Objectives This study aims to measure the sensitivity and the specificity of muscle ultrasound in assessment of suspected limb girdle muscular dystrophy patients. Subjects and Methods This cross-sectional descriptive study was conducted on Fifty-five patients with suspected LGMD from neuromuscular unit, myology clinic, Ain Shams University hospitals and eight healthy subjects. Age was above 2 years. Both sexes were included in the study. They underwent real-time B-mode ultrasonography performed with using Logiq p9 General Electric ultrasound machine and General Electric 7-11.5 MHZ linear array ultrasound probe. All ultrasound images have been obtained and scored by a single examiner and muscle echo intensity was visually graded semiquantitative according to Heckmatt's scale. The examiner was blinded to the muscle biopsy results and clinical evaluations. Results Statistical analysis revealed that the diagnostic performance of muscle US (Heckmatt’s score) in LGMD is most sensitive when calculated in all examined upper limb and lower limb muscles, followed by lower limb muscles alone. US of upper limb was found to be the least sensitive. Conclusions Muscle ultrasound is a practical and reproducible and valid tool that can be used in assessment of suspected LGMD patients.


Sign in / Sign up

Export Citation Format

Share Document