scholarly journals Corrigendum to “Distinct Effects of Sonic Hedgehog and Wnt-7a on Differentiation of Neonatal Neural Stem/Progenitor Cells In vitro” [Neuroscience 171 (3) (2010) 693–711]

Author(s):  
I. Prajerova ◽  
P. Honsa ◽  
A. Chvatal ◽  
M. Anderova
2006 ◽  
Vol 84 (7) ◽  
pp. 1415-1424 ◽  
Author(s):  
J. Faijerson ◽  
R.B. Tinsley ◽  
K. Apricó ◽  
A. Thorsell ◽  
C. Nodin ◽  
...  

2013 ◽  
Vol 11 (2) ◽  
pp. 874-887 ◽  
Author(s):  
Jingjing Guo ◽  
Jianing Wang ◽  
Chunrong Liang ◽  
Jun Yan ◽  
Yeran Wang ◽  
...  

2014 ◽  
Vol 84 ◽  
pp. 72-78 ◽  
Author(s):  
John J. Vennemeyer ◽  
Tracy Hopkins ◽  
Julia Kuhlmann ◽  
William R. Heineman ◽  
Sarah K. Pixley

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Wen-Qing Li ◽  
Ze-jian Wang ◽  
Sha Liu ◽  
Yue Hu ◽  
Ming Yin ◽  
...  

Alzheimer’s disease, one of the neurodegenerative diseases, shows the progressive senescence of neural progenitor/stem cells. N-Stearoyl-L-tyrosine (NsTyr) showed neuroprotective effect against chronic brain ischemia in previous reports. In the present study, we find the antisenescent effects of NsTyr-2K in NSPCs induced by Aβ1–42in vitro. Cell viability of NSPCs was evaluated by CCK8 assay; SA-β-gal staining was used to evaluate senescence of NSPCs. CB receptors were detected by immunohistochemistry in NSPCs. AM251 or AM630 was used to offset the anti-senescence effects afforded by NsTyr-2K. The positive rate of SA-β-gal staining was significantly increased in NSPCs after incubation with Aβ1–42for 9 days. CB receptors were found on the surface of NSPCs. The expression level of CB1 receptors was significantly decreased in NSPCs after incubation with Aβ1–42. This phenomenon was reversed dose-dependently by NsTyr-2K. NsTyr-2K attenuated Aβ1–42induced NSPCs senescence dose-dependently, and its antisenescence effect was completely abolished by AM630. Aβ1–42dose-dependently increased the prosenescence molecules p16 and Rb. Their expression was inhibited by NsTyr-2K dose-dependently and blocked by AM630 in NSPCs. These results suggest that NsTyr-2K can alleviate the senescence of NSPCs induced by Aβ1–42via CB2 receptor.


Neuroreport ◽  
2007 ◽  
Vol 18 (9) ◽  
pp. 895-900 ◽  
Author(s):  
Tomoaki Kato ◽  
Yonehiro Kanemura ◽  
Kazunori Shiraishi ◽  
Jun Miyake ◽  
Seiji Kodama ◽  
...  

2012 ◽  
Vol 287 (15) ◽  
pp. 12529-12540 ◽  
Author(s):  
Pei-Shan Wang ◽  
Jing Wang ◽  
Yi Zheng ◽  
Catherine J. Pallen

Tightly controlled termination of proliferation determines when oligodendrocyte progenitor cells (OPCs) can initiate differentiation and mature into myelin-forming cells. Protein-tyrosine phosphatase α (PTPα) promotes OPC differentiation, but its role in proliferation is unknown. Here we report that loss of PTPα enhanced in vitro proliferation and survival and decreased cell cycle exit and growth factor dependence of OPCs but not neural stem/progenitor cells. PTPα−/− mice have more oligodendrocyte lineage cells in embryonic forebrain and delayed OPC maturation. On the molecular level, PTPα-deficient mouse OPCs and rat CG4 cells have decreased Fyn and increased Ras, Cdc42, Rac1, and Rho activities, and reduced expression of the Cdk inhibitor p27Kip1. Moreover, Fyn was required to suppress Ras and Rho and for p27Kip1 accumulation, and Rho inhibition in PTPα-deficient cells restored expression of p27Kip1. We propose that PTPα-Fyn signaling negatively regulates OPC proliferation by down-regulating Ras and Rho, leading to p27Kip1 accumulation and cell cycle exit. Thus, PTPα acts in OPCs to limit self-renewal and facilitate differentiation.


Oncotarget ◽  
2015 ◽  
Vol 6 (35) ◽  
pp. 37083-37097 ◽  
Author(s):  
Giulia Zanni ◽  
Elena Di Martino ◽  
Anna Omelyanenko ◽  
Michael Andäng ◽  
Ulla Delle ◽  
...  

Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Brenda Gutierrez ◽  
Lisa A Flanagan

Human neural stem/progenitor cells (hNSPCs) have the potential to widen the current narrow treatment window for stroke as they improve functional recovery in rodent stroke models when transplanted weeks after stroke. One aspect of the hNSPC-induced functional recovery is increased angiogenesis and neovascularization in the peri-infarct region. Our lab created a human cell in vitro model of vessel formation by seeding hNSPCs and human endothelial progenitor cells (hEPCs) in a 3D scaffold composed of salmon fibrinogen, laminin, and hyaluronic acid that mimics brain tissue properties. Using our in vitro neurovascular model, we tested the hypothesis that hNSPC-secreted material plays a role in the stimulation of vessel formation. Our RNA-Seq data show that hNSPCs express high levels of secreted pro-angiogenic proteins, such as growth factors, matrix molecules, and cytokines, but hNSPCs might also impact vessel formation by secretion of extracellular vesicles or cell-contact mediated mechanisms. In order to determine the effect of hNSPC-secreted material on vessel formation, mCherry-labeled hEPCs were seeded in 3D scaffolds alone, with CellTracker Green-labeled hNSPCs, or with hNSPC-conditioned media containing hNSPC-secreted soluble factors and extracellular vesicles, such as exosomes. Vessel formation was quantified using AngioTool to determine total vessel length, number of branch points, and vessel percentage area. We found an increase in vessel formation in the presence of hNSPCs and hNSPC-conditioned media compared to hEPCs alone. In conclusion, material secreted by hNSPCs can recapitulate the increase in vessel formation induced by hNSPCs themselves. In future studies, we will determine whether hNSPC-derived exosomes are important for promoting vessel formation as they have therapeutic potential without the limitations of cell therapy.


Sign in / Sign up

Export Citation Format

Share Document