scholarly journals The discovery of the neutron stars merger GW170817/GRB170817A and a binary stars evolution

New Astronomy ◽  
2018 ◽  
Vol 63 ◽  
pp. 48-60 ◽  
Author(s):  
Vladimir Lipunov ◽  
Victor Kornilov ◽  
Evgeny Gorbovskoy ◽  
Galina Lipunova ◽  
Daniil Vlasenko ◽  
...  
2018 ◽  
pp. 103-105
Author(s):  
Alvaro De Rújula

Neutron stars, binary stars and pulsars. The Arecibo radio antenna. The discovery of the first binary pulsar (PS1913+16) by Husle and Taylor. This pulsar’s understanding in general relativity: A fantastic success.


2021 ◽  
Author(s):  
Maciej Dabrowny ◽  
Nicola Giacobbo ◽  
Davide Gerosa

AbstractFollowing the collapse of their cores, some of the massive binary stars that populate our Universe are expected to form merging binaries composed of black holes and neutron stars. Gravitational-wave observations of the resulting compact binaries can reveal precious details on the inner workings of the supernova mechanism and the subsequent formation of compact objects. Within the framework of the population-synthesis code mobse, we present the implementation of a new supernova model that relies on the compactness of the collapsing star. The model has two free parameters, namely the compactness threshold that separates the formation of black holes and that of neutron stars, and the fraction of the envelope that falls back onto the newly formed black holes. We compare this model extensively against other prescriptions that are commonly used in binary population synthesis. We find that the cleanest signatures of the role of the pre-supernova stellar compactness are (1) the relative formation rates of the different kinds of compact binaries, which mainly depend on the compactness threshold parameter, and (2) the location of the upper edge of the mass gap between the lightest black holes and the heaviest neutron stars, which mainly depends on the fallback fraction.


2000 ◽  
Vol 24 (1) ◽  
pp. 259-276
Author(s):  
Edward F. Guinan ◽  
P. Szkody ◽  
M. Rodono ◽  
L. Bianchi ◽  
J.V. Clausen ◽  
...  

This is the last triennial report of Commission 42 for this millennium. A great deal has been accomplished in the study of Close Binary Stars (CBS) since the discovery of the first close (eclipsing) binary, Algol, in 1783 by John Goodricke. Now, over 10,000 CBS (most eclipsing variables) are known. More than 5000 of these CBS were discovered over the last several years alone! And many more are expected to be detected over the next few years. Most of these stars were found as spin-offs of microlensing surveys. Interestingly, nearly half of these stars are found outside our Galaxy, primarily in the Magellanic Clouds and M31. Every type of star is represented as a member of a close binary. These include main sequence (as well as pre-main sequence) stars, giants, and supergiants, with the entire possible range of of spectral types and masses represented. Moreover, “dying” stars and “dead” stars, such as white dwarfs, neutron stars, black holes, and, more recently, even brown dwarfs and giant planets (e.g., 51 Peg) have been found as members of close binary systems.


2018 ◽  
Vol 14 (S346) ◽  
pp. 474-477
Author(s):  
ChengMin Zhang ◽  
YiYan Yang

AbstractFor the observed 18 pairs of double neutron star (DNS) systems, we find that DNS mass distribution is very narrow and its mean value (about 1.34 solar mass) is less than the mean of all measured pulsars of about 1.4 solar mass. To interpret the special DNS mass characteristics, we analyze the DNS formation process, via the phases of HMXBs, by investigating the evolution of massive binary stars. Moreover, in DNSs, two classes of NSs are taken into account, formed by supernova (SN) and electron capture (EC), respectively, and generally the NS mass by SN is bigger than that by EC. Quantitatively, with various initial conditions of binary stars, the observed special DNS distribution can be satisfactorily explained.


1978 ◽  
Vol 2 (1) ◽  
pp. 165-169
Author(s):  
Qu Qin-yue ◽  
Wang Zhen-ru ◽  
Lu Tan ◽  
Luo Liao-fu
Keyword(s):  

1979 ◽  
Vol 46 ◽  
pp. 371-384 ◽  
Author(s):  
J.B. Hearnshaw

RSCVn stars are fully detached binary stars which show intrinsic small amplitude (up to 0.3 amplitude peak-to-peak) light variations, as well as, in most of the known cases, eclipses. The spectra are F to G, IV to V for the hotter component and usually KOIV for the cooler. They are also characterised by abnormally strong H and K emission from the cooler star, or, occasionally, from both components. The orbital and light curve periods are in the range 1 day to 2 weeks. An interesting feature is the migration of the light variations to earlier orbital phase, as the light variation period is shorter than the orbital period by a few parts in 10+4to a few parts in 10+3.


1973 ◽  
Vol 110 (7) ◽  
pp. 441 ◽  
Author(s):  
Ya.B. Zel'dovich
Keyword(s):  

1999 ◽  
Vol 169 (8) ◽  
pp. 825 ◽  
Author(s):  
Dmitrii G. Yakovlev ◽  
Kseniya P. Levenfish ◽  
Yurii A. Shibanov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document