scholarly journals Left ear advantage in speech-related dichotic listening is not specific to auditory processing disorder in children: A machine-learning fMRI and DTI study

2013 ◽  
Vol 3 ◽  
pp. 8-17 ◽  
Author(s):  
Vincent J. Schmithorst ◽  
Rola Farah ◽  
Robert W. Keith
2020 ◽  
Author(s):  
Tulio Guadalupe ◽  
Xiang-Zhen Kong ◽  
Sophie E. A. Akkermans ◽  
Simon E. Fisher ◽  
Clyde Francks

AbstractMost people have a right-ear advantage for the perception of spoken syllables, consistent with left hemisphere dominance for speech processing. However, there is considerable variation, with some people showing left-ear advantage. The extent to which this variation is reflected in brain structure remains unclear. We tested for relations between hemispheric asymmetries of auditory processing and of grey matter in 281 adults, using dichotic listening and voxel-based morphometry. This was the largest study of this issue to date. Per-voxel asymmetry indexes were derived for each participant following registration of brain magnetic resonance images to a template that was symmetrized. The asymmetry index derived from dichotic listening was related to grey matter asymmetry in clusters of voxels corresponding to the amygdala and cerebellum lobule VI. There was also a smaller, non-significant cluster in the posterior superior temporal gyrus, a region of auditory cortex. These findings contribute to the mapping of asymmetrical structure-function links in the human brain, and suggest that subcortical structures should be investigated in relation to hemispheric dominance for speech processing, in addition to auditory cortex.


Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1183
Author(s):  
Pamela Villar González ◽  
Onur Güntürkün ◽  
Sebastian Ocklenburg

Left-hemispheric language dominance is a well-known characteristic of the human language system. However, it has been shown that leftward language lateralization decreases dramatically when people communicate using whistles. Whistled languages present a transformation of a spoken language into whistles, facilitating communication over great distances. In order to investigate the laterality of Silbo Gomero, a form of whistled Spanish, we used a vocal and a whistled dichotic listening task in a sample of 75 healthy Spanish speakers. Both individuals that were able to whistle and to understand Silbo Gomero and a non-whistling control group showed a clear right-ear advantage for vocal dichotic listening. For whistled dichotic listening, the control group did not show any hemispheric asymmetries. In contrast, the whistlers’ group showed a right-ear advantage for whistled stimuli. This right-ear advantage was, however, smaller compared to the right-ear advantage found for vocal dichotic listening. In line with a previous study on language lateralization of whistled Turkish, these findings suggest that whistled language processing is associated with a decrease in left and a relative increase in right hemispheric processing. This shows that bihemispheric processing of whistled language stimuli occurs independent of language.


2018 ◽  
Vol 29 (05) ◽  
pp. 364-377 ◽  
Author(s):  
David R. Moore ◽  
Stephanie L. Sieswerda ◽  
Maureen M. Grainger ◽  
Alexandra Bowling ◽  
Nicholette Smith ◽  
...  

AbstractChildren referred to audiology services with otherwise unexplained academic, listening, attention, language, or other difficulties are often found to be audiometrically normal. Some of these children receive further evaluation for auditory processing disorder (APD), a controversial construct that assumes neural processing problems within the central auditory nervous system. This study focuses on the evaluation of APD and how it relates to diagnosis in one large pediatric audiology facility.To analyze electronic records of children receiving a central auditory processing evaluation (CAPE) at Cincinnati Children’s Hospital, with a broad goal of understanding current practice in APD diagnosis and the test information which impacts that practice.A descriptive, cross-sectional analysis of APD test outcomes in relation to final audiologist diagnosis for 1,113 children aged 5–19 yr receiving a CAPE between 2009 and 2014.Children had a generally high level of performance on the tests used, resulting in marked ceiling effects on about half the tests. Audiologists developed the diagnostic category “Weakness” because of the large number of referred children who clearly had problems, but who did not fulfill the AAA/ASHA criteria for diagnosis of a “Disorder.” A “right-ear advantage” was found in all tests for which each ear was tested, irrespective of whether the tests were delivered monaurally or dichotically. However, neither the side nor size of the ear advantage predicted the ultimate diagnosis well. Cooccurrence of CAPE with other learning problems was nearly universal, but neither the number nor the pattern of cooccurring problems was a predictor of APD diagnosis. The diagnostic patterns of individual audiologists were quite consistent. The number of annual assessments decreased dramatically during the study period.A simple diagnosis of APD based on current guidelines is neither realistic, given the current tests used, nor appropriate, as judged by the audiologists providing the service. Methods used to test for APD must recognize that any form of hearing assessment probes both sensory and cognitive processing. Testing must embrace modern methods, including digital test delivery, adaptive testing, referral to normative data, appropriate testing for young children, validated screening questionnaires, and relevant objective (physiological) methods, as appropriate. Audiologists need to collaborate with other specialists to understand more fully the behaviors displayed by children presenting with listening difficulties. To achieve progress, it is essential for clinicians and researchers to work together. As new understanding and methods become available, it will be necessary to sort out together what works and what doesn’t work in the clinic, both from a theoretical and a practical perspective.


Author(s):  
Tulio Guadalupe ◽  
Xiang-Zhen Kong ◽  
Sophie E. A. Akkermans ◽  
Simon E. Fisher ◽  
Clyde Francks

AbstractMost people have a right-ear advantage for the perception of spoken syllables, consistent with left hemisphere dominance for speech processing. However, there is considerable variation, with some people showing left-ear advantage. The extent to which this variation is reflected in brain structure remains unclear. We tested for relations between hemispheric asymmetries of auditory processing and of grey matter in 281 adults, using dichotic listening and voxel-based morphometry. This was the largest study of this issue to date. Per-voxel asymmetry indexes were derived for each participant following registration of brain magnetic resonance images to a template that was symmetrized. The asymmetry index derived from dichotic listening was related to grey matter asymmetry in clusters of voxels corresponding to the amygdala and cerebellum lobule VI. There was also a smaller, non-significant cluster in the posterior superior temporal gyrus, a region of auditory cortex. These findings contribute to the mapping of asymmetrical structure–function links in the human brain and suggest that subcortical structures should be investigated in relation to hemispheric dominance for speech processing, in addition to auditory cortex.


Sign in / Sign up

Export Citation Format

Share Document