scholarly journals Particle identification with the ATLAS electromagnetic calorimeter

Author(s):  
Sylvain Tisserant
2021 ◽  
Vol 251 ◽  
pp. 04032
Author(s):  
Alex Rua Herrera ◽  
Míriam Calvo Gómez ◽  
Xavier Vilasís Cardona

The LHCb’s Electromagentic Calorimeter (ECAL) measures the energy that any particle leaves behind when it travels through its sensors. However, with the current granularity, it is not possible to exploit the shape of the shower produced by the particle when it interacts with the ECAL, which is an information that could be enough to conclude what particle is being detected. In an attempt to find out whether it would be possible to classify them in future runs of the LHC, simulated data is generated with Geant4, giving an idea of what SPACAL, an updated version of the current calorimeter with better resolution, is capable of. Convolutional Neural Networks are applied so that the algorithm can understand the shapes and energy deposits produced by each kind of particle. Results obtained demonstrate that bigger resolution in ECAL allows over 95% precision in some classifications such as photons against neutrons.


Author(s):  
J.M. Titchmarsh

The advances in recent years in the microanalytical capabilities of conventional TEM's fitted with probe forming lenses allow much more detailed investigations to be made of the microstructures of complex alloys, such as ferritic steels, than have been possible previously. In particular, the identification of individual precipitate particles with dimensions of a few tens of nanometers in alloys containing high densities of several chemically and crystallographically different precipitate types is feasible. The aim of the investigation described in this paper was to establish a method which allowed individual particle identification to be made in a few seconds so that large numbers of particles could be examined in a few hours.A Philips EM400 microscope, fitted with the scanning transmission (STEM) objective lens pole-pieces and an EDAX energy dispersive X-ray analyser, was used at 120 kV with a thermal W hairpin filament. The precipitates examined were extracted using a standard C replica technique from specimens of a 2¼Cr-lMo ferritic steel in a quenched and tempered condition.


2021 ◽  
Vol 68 (2) ◽  
pp. 173-181
Author(s):  
C. A. Aidala ◽  
S. Altaf ◽  
R. Belmont ◽  
S. Boose ◽  
D. Cacace ◽  
...  

2020 ◽  
Vol 1525 ◽  
pp. 012099
Author(s):  
Artem Ryzhikov ◽  
Denis Derkach ◽  
Mikhail Hushchyn ◽  

2020 ◽  
Vol 15 (10) ◽  
pp. P10002-P10002
Author(s):  
A.M. Sirunyan ◽  
A. Tumasyan ◽  
W. Adam ◽  
F. Ambrogi ◽  
T. Bergauer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document