beam test
Recently Published Documents


TOTAL DOCUMENTS

674
(FIVE YEARS 89)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Federica Oliva

Abstract PADME (Positron Annihilation into Dark Matter Experiment) is a fixed target experiment located at the Beam Test Facility (BTF) at the Laboratori Nazionali di Frascati (LNF) designed to search for a massive dark photon A' in the process e+e- into γA', using a positron beam of energy up to 550 MeV.


2021 ◽  
pp. 103834
Author(s):  
Xue Zhang ◽  
Yuheng Zhao ◽  
Ziping Zhu ◽  
Shuang Sha ◽  
Changming Lv

2021 ◽  
Vol 1205 (1) ◽  
pp. 012023
Author(s):  
D Lehký ◽  
R Pukl ◽  
D Novák ◽  
M Lipowczan

Abstract Computational-experimental methodology based on artificial neural networks used to identify the material parameters of fibre-reinforced cementitious composite is presented and applied for Ohno shear beam test. The aim is to provide techniques for an advanced assessment of the mechanical fracture properties of these materials, and the subsequent numerical simulation of components/structures made from them. The paper describes the development of computational and material models utilized for efficient material parameter determination with regards to a studied composite. The data is used in inverse analysis based on artificial neural networks together with sensitivity analysis which plays an important role in the process. Developed software tool FRCID-S is also briefly described.


Author(s):  
Saad I. Sarsam

Implementation of additives to the asphalt binder can enhance the overall physical properties of the modified asphalt concrete. In the present assessment, an attempt has been made to use 2 % of silica fumes and 4 % of fly ash class F for modification of asphalt binder in wet process. Asphalt concrete wearing course mixtures have been prepared and compacted by roller in the laboratory. The beam specimens of 400 mm length and 50 mm height and 63 mm width were extracted from the slab samples. The specimens were subjected to the four-point repeated flexural bending beam test. The flexural stiffness was calculated under three constant micro strain levels of (250, 400, and 750). The fatigue life was monitored in terms the number of load repetitions to reach the required reduction in stiffness. It was concluded that the flexural stiffness increases by (11, and 15) %, (17.7, and 63.6) %, (57.2, and 65) % when 2% of silica fumes or 4 % of fly ash are implemented and the specimen’s practices 750, 400, and 250 microstrain levels respectively. However, the fatigue life of asphalt concrete beam specimens increases by (40, and 72.8) %, (115, and 220.6) %, (46, and 94.6) % when 2% of silica fumes or 4 % of fly ash are implemented and the specimen’s practices 750, 400, and 250 microstrain levels respectively. It is recommended to use modified binder with fly ash and silica fumes in asphalt concrete to enhance the fatigue life and stiffness.


2021 ◽  
pp. 114780
Author(s):  
Artemis Kontiza ◽  
Dionisis Semitekolos ◽  
Tatjana Kosanovic Milickovic ◽  
Panagiotis Pappas ◽  
Nikolaos Koutroumanis ◽  
...  

2021 ◽  
Vol 2 (4) ◽  
pp. 8-12
Author(s):  
Saad Issa Sarsam

Modifying asphalt binder with additives can enhance the overall physical properties of asphalt concrete. In the present investigation, an attempt has been made to use 2 % of silica fumes and 4 % of fly ash class F for modification of asphalt binder in wet process. Asphalt concrete wearing course slab samples have been prepared under roller compaction. The beam specimens of 400 mm length and 50 mm height and 63 mm width were extracted from the slab samples. The beam specimens were subjected to the four-point repeated flexural bending beam test. The flexural stiffness was calculated under three constant micro strain levels of (250, 400, and 750). The fatigue life was monitored in terms the number of load repetitions to reach the required reduction in stiffness of 50 %. It was concluded that the flexural stiffness increases by (11, and 15) %, (17.7, and 63.6) %, (57.2, and 65) % when 2% of silica fumes or 4 % of fly ash are implemented and the specimen’s practices 750, 400, and 250 micro strain levels respectively. However, the fatigue life increases by (40, and 72.8) %, (115, and 220.6) %, (46, and 94.6) % when 2% of silica fumes or 4 % of fly ash are implemented and the specimen’s practices 750, 400, and 250 micro strain levels respectively. It is recommended to use modified binder with silica fumes and fly ash in asphalt concrete to enhance the fatigue life and stiffness.


2021 ◽  
Author(s):  
Zachary Hughes ◽  
Yosui Akaike ◽  
Richard G Bose ◽  
W. Robert Binns ◽  
Dana L Braun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document