High birefringence photonic crystal fiber with low loss and a broad single-mode range

Author(s):  
Xiaojuan Zhang ◽  
Jianlin Zhao
2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammad Rakibul Islam ◽  
Md. Arif Hossain ◽  
Syed Iftekhar Ali ◽  
Jakeya Sultana ◽  
Md. Saiful Islam

AbstractA novel photonic crystal fiber (PCF) based on TOPAS, consisting only rectangular slots is presented and analyzed in this paper. The PCF promises not only an extremely low effective material loss (EML) but also a flattened dispersion over a broad frequency range. The modal characteristics of the proposed fiber have been thoroughly investigated using finite element method. The fiber confirms a low EML of 0.009 to 0.01 cm−1 in the frequency range of 0.77–1.05 THz and a flattened dispersion of 0.22±0.01 ps/THz/cm. Besides, some other significant characteristics like birefringence, single mode operation and confinement loss have also been inspected. The simplicity of the fiber makes it easily realizable using the existing fabrication technologies. Thus it is anticipated that the new fiber has the potential to ensure polarization preserving transmission of terahertz signals and to serve as an efficient medium in the terahertz frequency range.


2012 ◽  
Vol 20 (22) ◽  
pp. 24465 ◽  
Author(s):  
Tao Zhu ◽  
Fufeng Xiao ◽  
Laicai Xu ◽  
Min Liu ◽  
Ming Deng ◽  
...  

2010 ◽  
Vol 37 (6) ◽  
pp. 1589-1593
Author(s):  
李宏雷 Li Honglei ◽  
娄淑琴 Lou Shuqin ◽  
郭铁英 Guo Tieying ◽  
王立文 Wang Liwen ◽  
陈卫国 Chen Weiguo ◽  
...  

2019 ◽  
Vol 33 (20) ◽  
pp. 1950218 ◽  
Author(s):  
Md. Khairum Monir ◽  
Mahmudul Hasan ◽  
Bikash Kumar Paul ◽  
Kawsar Ahmed ◽  
Hala J. El-Khozondar ◽  
...  

This paper proposes a novel model to attain high birefringence and low loss in a slotted core-based photonic crystal fiber (PCF) structure in THz regime. The performance of the proposed PCF has been evaluated by applying finite element method (FEM) with full simulation software COMSOL Multiphysics V-5.1. The proposed model gains good optical properties such as high birefringence of 0.24, low effective material loss (EML) of 0.03 cm[Formula: see text], low confinement loss of 6.5 × 10[Formula: see text] (dB/m), low scattering loss of 2 × 10[Formula: see text] (dB/m) and low bending loss of 7.4 × 10[Formula: see text] (dB/cm). The proposed structure also exhibits the flattened dispersion for wider frequency response. However, the real-life fabrication of the suggested model is highly feasible using the current technology due to the unique shape of circular air holes in the cladding region. The outcomes make the proposed PCF a stronger candidate for polarization-preserving applications such as sensing, communications and filtering operations in THz band.


2020 ◽  
Vol 34 (06) ◽  
pp. 2050077 ◽  
Author(s):  
Mohit Sharma ◽  
Vaishali Dixit ◽  
S. Konar ◽  
Kawsar Ahmed ◽  
Vigneswaran Dhasarathan

A novel type of highly birefringent photonic crystal fiber is designed, which yields to promise a very large birefringence [Formula: see text] with flat dispersion at the operating wavelength 1550 nm. By employing the FDTD method, other properties, such as dispersion, walk-off effect and [Formula: see text]-parameters, are highly optimized using lattice period of air holes.


2017 ◽  
Vol 54 (6) ◽  
pp. 060603
Author(s):  
谷芊志 Gu Qianzhi ◽  
励强华 Li Qianghua

2021 ◽  
Vol 67 ◽  
pp. 102728
Author(s):  
Zhanqiang Hui ◽  
Xue Yang ◽  
Dongdong Han ◽  
Feng Zhao ◽  
Jiamin Gong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document