P36 Hydrogen sulfide inhibits RANKL-induced ROS production and osteoclast differentiation

Nitric Oxide ◽  
2012 ◽  
Vol 27 ◽  
pp. S28
Author(s):  
Laura Gambari ◽  
Gina Lisignoli ◽  
Cristina Manferdini ◽  
Elena Gabusi ◽  
Anna Piacentini ◽  
...  
2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 782.2-782
Author(s):  
C. H. Lee ◽  
C. H. Chung ◽  
Y. J. Choi ◽  
W. H. Yoo ◽  
J. Y. Kim ◽  
...  

Background:Reactive oxygen species (ROS) are one of the significant factors of chemical or physical cell signaling in a wide variety of cell types including skeletal cells. Receptor activator of NF-βB ligand (RANKL) induces generation of intracellular ROS, which act as second messengers in RANKL-mediated osteoclastogenesis. Dual oxidase maturation factor 1 (Duoxa1) was first identified as aDrosophilaNumb-interacting protein (NIP), and has been associated with the maturation of ROS generating enzymes including dual oxidases (Duox1 and Duox2). In the progression of osteoclast differentiation using mouse bone marrow-derived macrophages (BMMs), we identified that only Duoxa1 level showed an effective change upon RANKL stimulation, but not Duox1, Duox2, and Duoxa2.Objectives:we hypothesized that Duoxa1 could independently act as a second messenger for RANKL stimulation and regulate ROS production during osteoclast differentiation.Methods:Using siRNA or retrovirus transduction and knockdown of Duoxa1 via siRNAResults:Duoxa1 level gradually increased during RANKL-induced osteoclast differentiation. We found that Duoxa1 regulated RANKL-stimulated osteoclast formation and bone resorption positively. knockdown of Duoxa1 via siRNA decreased the RANKL-induced ROS production. During Duoxa1-related control of osteoclastogenesis, activation of tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6)-mediated early signaling molecules including MAPKs, Akt, IβB, Btk, and PLC 2 was affected, which sequentially modified the mRNA or protein expression levels of key transcription factors in osteoclastogenesis, such as c-Fos and NFATc1, as well as mRNA expression of osteoclast-specific markers including OSCAR, ATP6v0d2, and CtsK.Conclusion:Overall, our data indicate that Duoxa1 plays a crucial role in osteoclastogenesis via regulating RANKL-induced intracellular ROS production and activating TRAF6-mediated signaling.Disclosure of Interests:None declared


Blood ◽  
2005 ◽  
Vol 106 (3) ◽  
pp. 852-859 ◽  
Author(s):  
Na Kyung Lee ◽  
Young Geum Choi ◽  
Ji Youn Baik ◽  
Song Yi Han ◽  
Dae-won Jeong ◽  
...  

Abstract Signaling by receptor activator of NF-κB (nuclear factor-κB) ligand (RANKL) is essential for differentiation of bone marrow monocyte-macrophage lineage (BMM) cells into osteoclasts. Here, we show RANKL stimulation of BMM cells transiently increased the intracellular level of reactive oxygen species (ROS) through a signaling cascade involving TNF (tumor necrosis factor) receptor-associated factor (TRAF) 6, Rac1, and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase (Nox) 1. A deficiency in TRAF6 or expression of a dominant-interfering mutant of TRAF6 blocks RANKL-mediated ROS production. Application of N-acetylcysteine (NAC) or blocking the activity of Nox, a protein leading to the formation of ROS, with diphenylene iodonium (DPI) inhibits the responses of BMM cells to RANKL, including ROS production, activation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein (MAP) kinase, and extracellular signal-regulated kinase (ERK), and osteoclast differentiation. Moreover, both RANKL-mediated ROS production and osteoclast differentiation were completely blocked in precursors depleted of Nox1 activity by RNA interference or by expressing a dominant-negative mutant of Rac1. Together, these results indicate that ROSs act as an intracellular signal mediator for osteoclast differentiation.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Haiyun Yu ◽  
Haiyan Xu ◽  
Xiaoni Liu ◽  
Nana Zhang ◽  
Anqi He ◽  
...  

Hydrogen sulfide (H2S) plays a crucial role in the regulation of blood pressure and oxidative stress. In the present study, we tested the hypothesis that H2S exerts its cardiovascular effects by reducing oxidative stress via inhibition of NADPH oxidase activity in the rostral ventrolateral medulla (RVLM). We examined cell distributions of cystathionine-β-synthase (CBS) and effects of H2S on reactive oxygen species (ROS) and mean arterial blood pressure (MAP) in spontaneously hypertensive rats (SHRs). We found that CBS was expressed in neurons of the RVLM, and the expression was lower in SHRs than in Wistar-Kyoto rats. Microinjection of NaHS (H2S donor), S-adenosyl-l-methionine (SAM, a CBS agonist), or Apocynin (NADPH oxidase inhibitor) into the RVLM reduced the ROS level, NADPH oxidase activity, and MAP, whereas microinjection of hydroxylamine hydrochloride (HA, a CBS inhibitor) increased MAP. Furthermore, intracerebroventricular infusion of NaHS inhibited phosphorylation ofp47phox, a key step of NADPH oxidase activation. Since decreasing ROS level in the RVLM reduces MAP and heart rate and increasing H2S reduces ROS production, we conclude that H2S exerts an antihypertensive effect via suppressing ROS production. H2S, as an antioxidant, may be a potential target for cardiovascular diseases.


2020 ◽  
Vol 21 (17) ◽  
pp. 6416
Author(s):  
Yoon-Hee Cheon ◽  
Chang Hoon Lee ◽  
Da Hye Jeong ◽  
Sung Chul Kwak ◽  
Soojin Kim ◽  
...  

Receptor activator of NF-κB ligand (RANKL) induces generation of intracellular reactive oxygen species (ROS), which act as second messengers in RANKL-mediated osteoclastogenesis. Dual oxidase maturation factor 1 (Duoxa1) has been associated with the maturation of ROS-generating enzymes including dual oxidases (Duox1 and Duox2). In the progression of osteoclast differentiation, we identified that only Duoxa1 showed an effective change upon RANKL stimulation, but not Duox1, Duox2, and Duoxa2. Therefore, we hypothesized that Duoxa1 could independently act as a second messenger for RANKL stimulation and regulate ROS production during osteoclastogenesis. Duoxa1 gradually increased during RANKL-induced osteoclastogenesis. Using siRNA or retrovirus transduction, we found that Duoxa1 regulated RANKL-stimulated osteoclast formation and bone resorption positively. Furthermore, knockdown of Duoxa1 decreased the RANKL-induced ROS production. During Duoxa1-related control of osteoclastogenesis, activation of tumor necrosis factor receptor-associated factor 6 (TRAF6)-mediated early signaling molecules including MAPKs, Akt, IκB, Btk, Src and PLCγ2 was affected, which sequentially modified the mRNA or protein expression levels of key transcription factors in osteoclast differentiation, such as c-Fos and NFATc1, as well as mRNA expression of osteoclast-specific markers. Overall, our data indicate that Duoxa1 plays a crucial role in osteoclastogenesis via regulating RANKL-induced intracellular ROS production and activating TRAF6-mediated signaling.


2015 ◽  
Vol 36 (3) ◽  
pp. 917-929 ◽  
Author(s):  
Dan Zheng ◽  
Shiyun Dong ◽  
Ting Li ◽  
Fan Yang ◽  
Xiangjing Yu ◽  
...  

Background: Oxidative stress inducing hyperglycemia and high glucose play an important role in the development of cardiac fibrosis associated with diabetic cardiomyopathy. The endogenous gasotransmitter hydrogen sulfide (H2S) can act in a cytoprotective manner. However, whether H2S could inhibit the fibrotic process is unclear. The purpose of our study was to examine the role of H2S in the development and underlying mechanisms behind diabetic cardiomyopathy. Methods: Diabetic cardiomyopathy was induced in rats by injection of streptozotocin (STZ). Cardiac fibrosis and proliferation of rat neonatal cardiac fibroblasts were induced by hyperglycemia and high glucose. We tested the effects of GYY4137 (a slow-releasing H2S donor), NaHS (an exogenous H2S donor) and NADPH oxidase 4 (NOX4) siRNA on reactive oxygen species (ROS) production, MMP-2,9, cystathionine-γ-lyase (CSE), NOX4, and extracellular signal-regulated kinase 1/2 (ERK1/2) to reveal the effects of H2S on the cardiac fibrosis of diabetic cardiomyopathy. Result: In vivo, NaHS treatment inhibited hyperglycemia-induced expression of type I and III collagen, MMP-2 and MMP-9 in diabetic hearts. Rat neonatal cardiac fibroblast migration and cell survival were inhibited by administration of GYY4137. NOX4 expression was increased by hyperglycemia and high glucose, but was reduced in cardiac fibroblasts treated by NaHS and GYY4137. ROS production, ERK1/2 phosphorylation and MMP-2 and 9 expression were decreased in rat neonatal cardiac fibroblasts treated with GYY4137 and NOX4 siRNA. Conclusion: The present study shows that enhanced NOX4 expression results in cardiac fibrosis through ROS-ERK1/2-MAPkinase-dependent mechanisms in diabetic cardiomyopathy. NOX4 could be an important target for H2S to regulate redox homeostasis in cardiac fibrosis of diabetic cardiomyopathy.


2012 ◽  
Vol 83 (4) ◽  
pp. 522-527 ◽  
Author(s):  
Koichiro Irie ◽  
Daisuke Ekuni ◽  
Takaaki Tomofuji ◽  
Yasumasa Endo ◽  
Kenta Kasuyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document