scholarly journals Increased long-term potentiation at medial-perforant path-dentate granule cell synapses induced by selective inhibition of histone deacetylase 3 requires Fragile X mental retardation protein

2014 ◽  
Vol 114 ◽  
pp. 193-197 ◽  
Author(s):  
Aimee V. Franklin ◽  
James R. Rusche ◽  
Lori L. McMahon
2010 ◽  
Vol 104 (2) ◽  
pp. 1047-1051 ◽  
Author(s):  
Benjamin D. Auerbach ◽  
Mark F. Bear

Fragile X Syndrome (FXS), the most common inherited form of intellectual disability, is caused by loss of the fragile X mental retardation protein (FMRP). FMRP is a negative regulator of local mRNA translation downstream of group 1 metabotropic glutamate receptor (Gp1 mGluR) activation. In the absence of FMRP there is excessive mGluR-dependent protein synthesis, resulting in exaggerated mGluR-dependent long-term synaptic depression (LTD) in area CA1 of the hippocampus. Understanding disease pathophysiology is critical for development of therapies for FXS and the question arises of whether it is more appropriate to target excessive LTD or excessive mGluR-dependent protein synthesis. Priming of long-term potentiation (LTP) is a qualitatively different functional consequence of Gp1 mGluR-stimulated protein synthesis at the same population of CA1 synapses where LTD can be induced. Therefore we determined if LTP priming, like LTD, is also disrupted in the Fmr1 knockout (KO) mouse. We found that mGluR-dependent priming of LTP is of comparable magnitude in wild-type (WT) and Fmr1 KO mice. However, whereas LTP priming requires acute stimulation of protein synthesis in WT mice, it is no longer protein synthesis dependent in the Fmr1 KO. These experiments show that the dysregulation of mGluR-mediated protein synthesis seen in Fmr1 KO mice has multiple consequences on synaptic plasticity, even within the same population of synapses. Furthermore, it suggests that there is a bifurcation in the Gp1 mGluR signaling pathway, with one arm triggering synaptic modifications such as LTP priming and LTD and the other stimulating protein synthesis that is permissive for these modifications.


2019 ◽  
Author(s):  
Azam Shirrafiardekani ◽  
Lubica Benuskova ◽  
Jörg Frauendiener

AbstractLong-term potentiation (LTP) and long-term depression (LTD) of synaptic efficacies are involved in establishment of long-term memories. In this process, neurons need to adjust the overall efficacy of their synapses by using mechanisms of homeostatic plasticity to balance their activity and control their firing rate. For instance, in the dentate granule cell in vivo, induction of homosynaptic LTP in the tetanized medial perforant path is accompanied by heterosynaptic LTD in the non-tetanized lateral perforant path. We used the compartmental model of this cell to test the following hypotheses: 1. Using plasticity and metaplasticity rules both based on postsynaptic voltage we can reproduce homosynaptic LTP and concurrent heterosynaptic LTD, provided there is an ongoing noisy spontaneous activity; 2. Frequency of an ongoing noisy spontaneous activity along the lateral path determines the magnitude of heterosynaptic LTD. In experiments where procaine was used to block the lateral spontaneous activity, no heterosynaptic LTD occurred. However, when the procaine was washed out and a second tetanization was applied to the medial path, no heterosynaptic LTD could have been induced neither. Our simulations predict that the reduced frequency of spontaneous activity in the lateral perforant path can account for this lasting absence of heterosynaptic LTD.


Author(s):  
Jean-Marie Godfraind ◽  
Edwin Reyniers ◽  
Kristel De Boulle ◽  
Rudi D'Hooge ◽  
Peter P. De Deyn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document