Experimental investigation on narrow gap heat transfer with porous media under downward-facing horizontal heated surface

2009 ◽  
Vol 239 (12) ◽  
pp. 3155-3160 ◽  
Author(s):  
B.X. Hu ◽  
G.H. Su ◽  
Y.W. Wu ◽  
K. Sugiyama ◽  
S.Z. Qiu
Author(s):  
Qiang Li ◽  
Yimin Xuan ◽  
Feng Yu ◽  
Junjie Tan

An experimental investigation was performed to study the heat transfer and flow features of Cu-water nanofluids (Cu particles with 26 nm diameter) in a submerged jet impingement cooling system. Three particular nozzle-to-heated surface distances (2, 4 and 6 mm) and four particle volume fractions (1.5%, 2.0%, 2.5% and 3.0%) are involved in the experiment. The experimental results reveal that the suspended nanoparticles increase the heat transfer performance of the base liquid in the jet impingement cooling system. Within the range of experimental parameters considered, it has been found that highest surface heat transfer coefficients can be achieved using a nozzle-to-surface distance of 4 mm and the nanofluid with 3.0% particle volume fraction. In addition, the experiments show that the system pressure drop of the dilute nanofluids is almost equal to that of water under the same entrance velocity.


Cryogenics ◽  
2015 ◽  
Vol 66 ◽  
pp. 53-62 ◽  
Author(s):  
Hervé Allain ◽  
Bertrand Baudouy ◽  
Michel Quintard ◽  
Marc Prat

Author(s):  
Amy S. Fleischer ◽  
Sharareh R. Nejad

An experimental investigation to understand the influence of the impingement surface geometry on the heat transfer from a discretely heated surface to a single round impinging jet is conducted. In this study, heat transfer at the stagnation region of a discretely heated pedestal protruding into an air stream is compared to the heat transfer on a discretely heated flat plate to determine the influence of impingement surface geometry on heat transfer for various Reynolds numbers, jet diameters and jet exit-surface spacings. The round jet issues from a tube of diameter 3.5 mm, 9.5 mm or 21 mm at jet exit-to-surface distances of 2–5 diameters with Re = 10,000–30,000. Under all operating conditions, the presence of a protruding pedestal is found to increase heat transfer.


Author(s):  
Bernardo Buonomo ◽  
Luca Cirillo ◽  
Oronzio Manca ◽  
Sergio Nardini

In this paper a numerical and experimental investigation on impinging jets with metal foam is carried out. The channel is partially filled with porous media. The physical model and geometry has been made considering that the lower impinging surface is heated at uniform heat flux, qw, and the upper surface is adiabatic. The flow is 2D, unsteady, laminar, and incompressible. The distance between the upper confining surface and the lower heated surface is H (40 mm). Fully developed fluid dynamic and thermal flow is assumed at the outlet sections and the fluid is air. The porous material is considered as homogeneous and isotropic. All the thermophysical properties of the fluid and the solid matrix of the porous medium are assumed constant except for the variation in density with the temperature giving rise to the buoyancy forces. Metal foam of 10 PPI is considered. It was investigated many configuration taking into account the ratio s/H and Dj/H. The values of ratio s/H ranging from 0 to 1 while values of the ratio Dj/H raging from 0.3–1.2. Results in terms of wall temperature profiles, local and average Nusselt numbers are presented for different Reynolds values. For the considered parameters, it is obtained that Nusselt number has a weak dependence of Dj/H, in fact, for the ratio equal to 0.3, it is noted that Nu is higher than the ratio equal to 0.6.


Author(s):  
Chen Li ◽  
G. P. Peterson

The evaporation and pool boiling on micro porous coated surfaces have been shown to provide among the highest heat transfer rates achievable from any type of surfaces. The heat transfer modes in these surfaces, present a number of interesting similarities and also, some fundamental differences, which are the result of the liquid supply methods to the heated surface. For the evaporation from porous coated surfaces, the liquid return to the heated surface is assisted by the capillary pressure at the liquid-vapor interface; while for pool boiling, gravity is the principal driving force that rewets the surface. In order to better understand the physical phenomena that governs the flow behavior of both the liquid and vapor phases, and the heat transfer process inside the porous media, comprehensive comparisons between these return mechanisms and their respective characteristics, and the performance and the critical heat flux (CHF) for each have been made, based on similar physical situations. These systematic comparisons illustrate that at a lower heat flux, the evaporation and pool boiling curves are almost identical due to the similar heat transfer modes, i.e., convection and nucleate boiling. While with further increases in heat flux, the heat transfer performance of the evaporation on micro porous media is generally superior to pool boiling on an identical surface. This shift is believed to be due to the fact that for evaporation on micro porous media, the heat transfer mode is dominated by the film evaporation, while in pool boiling, it is principally the result of fully developed nucleate boiling. It was also observed that the impact of the effective thermal conductivity of the porous coating on pool boiling performance is larger than for evaporation heat transfer on the identical micro porous coated surfaces. In general, the experimental data indicated that the CHF for evaporation heat transfer is much higher than for pool boiling on the same surfaces. The mechanism of CHF for evaporation on porous coated surfaces is believed to be the capillary limit; while for pool boiling the limit is the result of the hydrodynamic instabilities. This difference in mechanisms is clearly demonstrated by the experimental observations, where initially, the dry out process of the porous coated surfaces during evaporation is gradual, while for pool boiling; the entire surface reaches dry out in a very short time. In addition, the sensitivity of the CHF to the thickness of the porous coatings at a constant volumetric porosity and pore size, as well as the various optimal volumetric porosity of the CHF at a given thickness, are clearly the results of the differences induced by the various CHF mechanisms.


2013 ◽  
Vol 16 (8) ◽  
pp. 695-707 ◽  
Author(s):  
Mohammad Nikian ◽  
Hossein Shokouhmand ◽  
M. Khayat ◽  
A. Mohammadzadeh

Sign in / Sign up

Export Citation Format

Share Document