Failure analysis of pebble bed reactors during earthquake by discrete element method

2013 ◽  
Vol 258 ◽  
pp. 102-106 ◽  
Author(s):  
Istvan Keppler
2017 ◽  
Vol 199 (1) ◽  
pp. 47-66
Author(s):  
Vaibhav Khane ◽  
Mahmoud M. Taha ◽  
Gary E. Mueller ◽  
Muthanna H. Al-Dahhan

Author(s):  
Joshua J. Cogliati ◽  
Abderrafi M. Ougouag

The operation of pebble bed reactors, including fuel circulation, can generate graphite dust, which in turn could be a concern for internal components; and to the near field in the remote event of a break in the coolant circuits. The design of the reactor system must, therefore, take the dust into account and the operation must include contingencies for dust removal and for mitigation of potential releases. Such planning requires a proper assessment of the dust inventory. This paper presents a predictive model of dust generation in an operating pebble bed with recirculating fuel. In this preliminary work the production model is based on the use of the assumption of proportionality between the dust production and the normal force and distance traveled. The model developed in this work uses the slip distances and the inter-pebble forces computed by the authors’ PEBBLES. The code, based on the discrete element method, simulates the relevant static and kinetic friction interactions between the pebbles as well as the recirculation of the pebbles through the reactor vessel. The interaction between pebbles and walls of the reactor vat is treated using the same approach. The amount of dust produced is proportional to the wear coefficient for adhesive wear (taken from literature) and to the slip volume, the product of the contact area and the slip distance. The paper will compare the predicted volume with the measured production rates. The simulation tallies the dust production based on the location of creation. Two peak production zones from intra pebble forces are predicted within the bed. The first zone is located near the pebble inlet chute due to the speed of the dropping pebbles. The second peak zone occurs lower in the reactor with increased pebble contact force due to the weight of supported pebbles. This paper presents the first use of a Discrete Element Method simulation of pebble bed dust production.


Author(s):  
Alireza Sadeghi Chahardeh ◽  
Roozbeh Mollaabbasi ◽  
Donald Picard ◽  
Seyed Mohammad Taghavi ◽  
Houshang Alamdari

An in-depth study of the failure of granular materials, which is known as a mechanism to generate defects, can reveal the facts about the origin of the imperfections such as cracks in the carbon anodes. The initiation and propagation of the cracks in the carbon anode, especially the horizontal cracks below the stub-holes, reduce the anode efficiency during the electrolysis process. In order to avoid the formation of cracks in the carbon anodes, the failure analysis of coke aggregates can be employed to determine the appropriate recipe and operating conditions. In this paper, it will be shown that a particular failure mode can be responsible for the crack generation in the carbon anodes. The second-order work criterion is employed to analyze the failure of the coke aggregate specimens and the relationships between the second-order work, the kinetic energy, and the instability of the granular material are investigated. In addition, the coke aggregates are modeled by exploiting the discrete element method (DEM) to reveal the micro-mechanical behavior of the dry coke aggregates during the compaction process. The optimal number of particles required for the failure analysis in the DEM simulations is determined. The effects of the confining pressure and the strain rate as two important compaction process parameters on the failure are studied. The results reveal that increasing the confining pressure enhances the probability of the diffusing mode of the failure in the specimen. On the other hand, the increase of strain rate augments the chance of the strain localization mode of the failure in the specimen.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Guodong Liu ◽  
Yining Zhang ◽  
Huilin Lu ◽  
Ersheng You ◽  
Xiang Li

Modular pebble-bed nuclear reactor (MPBNR) technology is promising due to its attractive features such as high fuel performance and inherent safety. Particle motion of fuel and graphite pebbles is highly associated with the performance of pebbled-bed modular nuclear reactor. To understand the mechanism of pebble’s motion in the reactor, we numerically studied the influence of number ratio of fuel and graphite pebbles, funnel angle of the reactor, height of guide ring on the distribution of pebble position, and velocity by means of discrete element method (DEM) in a two-dimensional MPBNR. Velocity distributions at different areas of the reactor as well as mixing characteristics of fuel and graphite pebbles were investigated. Both fuel and graphite pebbles moved downward, and a uniform motion was formed in the column zone, while pebbles motion in the cone zone was accelerated due to the decrease of the cross sectional flow area. The number ratio of fuel and graphite pebbles and the height of guide ring had a minor influence on the velocity distribution of pebbles, while the variation of funnel angle had an obvious impact on the velocity distribution. Simulated results agreed well with the work in the literature.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2174
Author(s):  
Alireza Sadeghi-Chahardeh ◽  
Roozbeh Mollaabbasi ◽  
Donald Picard ◽  
Seyed Mohammad Taghavi ◽  
Houshang Alamdari

An in-depth study of the failure of granular materials, which is known as a mechanism to generate defects, can reveal the facts regarding the origin of the imperfections, such as cracks in the carbon anodes. The initiation and propagation of the cracks in the carbon anode, especially the horizontal cracks below the stub-holes, reduce the anode efficiency during the electrolysis process. The failure analysis of coke aggregates can be employed to determine the appropriate recipe and operating conditions in order to avoid the formation of cracks in the carbon anodes. In this paper, it will be shown that a particular failure mode can be responsible for the crack generation in the carbon anodes. The second-order work criterion is employed to analyze the failure of the coke aggregate specimens and the relationships between the second-order work, the kinetic energy, and the instability of the granular material are investigated. In addition, the coke aggregates are modeled by exploiting the discrete element method (DEM) to reveal the micro-mechanical behavior of the dry coke aggregates during the compaction process. The optimal number of particles required for the failure analysis in the DEM simulations is determined. The effects of the confining pressure and strain rate as two important compaction process parameters on the failure are studied. The results reveal that increasing the confining pressure enhances the probability of the diffusing mode of the failure in the specimen. On the other hand, the increase of strain rate augments the chance of the strain localization mode of the failure in the specimen.


Sign in / Sign up

Export Citation Format

Share Document