discrete element method simulation
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 23)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 927 (1) ◽  
pp. 012018
Author(s):  
Nicholas Sidharta ◽  
Almanzo Arjuna

Abstract Pebble bed reactor with a once-through-then-out fuelling scheme has the advantage of simplifying the refueling system. However, the core upper-level power density is relatively higher than the bottom, producing an asymmetric core axial power distribution. Several burnable poison (BP) configurations are used to flatten the peak power density and improve power distribution while suppressing the excess core reactivity at the beginning of the burnup cycle. This study uses HTR-PM, China’s pebble bed reactor core, to simulate several burnable poison (BP) configurations. Serpent 2 coupled with Octave and a discrete element method simulation is used to model and simulate the pebble bed reactor core. It is found that erbium needs a large volumetric fraction in either QUADRISO or distributed BP to perform well. On the other hand, gadolinium and boron need a smaller volumetric fraction but perform worse in radial power distribution criteria in the fuel sphere. This study aims to verify the effect of BP added fuel pebbles on an OTTO refueling scheme HTR-PM core axial power distribution and excess reactivity.


Author(s):  
Michael Hindemith ◽  
Jonas Heidelberger ◽  
Matthias Wangenheim

ABSTRACT While in nature, snow properties change from day to day or even minute by minute, one of the great advantages of lab tests is the stability and reproducibility of testing conditions. In our labs at the Institute of Dynamics and Vibration Research, Leibniz Universität Hannover, we currently run three test rigs that are able to conduct tests with tire tread blocks on snow and ice tracks [1,2]: High-Speed Linear Tester (HiLiTe) [3], Portable Friction Tester (PFT), and Reproducible Tread Block Mechanics in Lab (RepTiL). In the past years, we have run a project on the influence of snow track properties on friction and traction test results with those test rigs. In this article, we will present a first excerpt of the results concentrating on the RepTiL test rig. Because this rig reproduces the movement of rolling tire tread blocks [2], we executed a test campaign with special samples for the analysis of snow friction mechanics. We evaluated penetration into the snow, maximum longitudinal force level, and longitudinal force gradient. On the other hand, we varied the snow density while preparing our tracks to assess the influence of the snow track density on the friction mechanics. In parallel, we have accompanied our experiments with discrete element method simulations to better visualize and understand the physics behind the interaction between snow and samples. The simulation shows the distribution of induced stress within the snow tracks and resulting movement of snow particles. Hypotheses for the explanation of the friction behavior in the experiments were confirmed. Both tests and simulations showed, with good agreement, a strong influence of snow density and sample geometry.


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 775
Author(s):  
Jiale Zhao ◽  
Xiaogeng Wang ◽  
Jian Zhuang ◽  
Huili Liu ◽  
Yijia Wang ◽  
...  

The high energy consumption and low crushing length qualification rate of traditional straw returning machines in the main maize-growing regions of northeast China make it difficult to promote straw returning operations in the region. The primnoa locust mouthpart is extremely efficient in cutting maize rootstocks. In this paper, it was found that there are significant differences between the primnoa locust mouthpart and the conventional machine, these exist mainly in the cutting edge structure and cutting motion. Thus, this paper develops a coupled bionic design for structural and kinematic coupling elements to develop a bionic straw returning machine. This paper found that the operating performance of the bionic straw returning machine was mainly affected by the blade rotation radius and the output rotation speed of the drive mechanism through DEM (discrete element method) simulation, and the optimal combination of the two parameters was 248 mm rotation radius and 930 r/min output rotation speed. Finally, this paper finds that the most obvious operational performance difference of the bionic straw returning machine compared with the traditional straw returning machine is that it can reduce the cutting power consumption by 9.4–11.7% and improve the crushing length qualification rate by 10.4–14.7% through the operational performance comparison test. Based on the above findings, this paper suggests that in future research and development of straw returning machines, more attention can be focused on finding suitable bionic prototypes and improving bionic design methods.


2021 ◽  
Vol MA2021-01 (2) ◽  
pp. 175-175
Author(s):  
Alain C. Ngandjong ◽  
Teo Lombardo ◽  
Emiliano N. Primo ◽  
Mehdi Chouchane ◽  
Abbos Shodiev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document