compaction process
Recently Published Documents


TOTAL DOCUMENTS

403
(FIVE YEARS 95)

H-INDEX

25
(FIVE YEARS 7)

2021 ◽  
Vol 14 (2) ◽  
pp. 130-133
Author(s):  
Elvis Adril ◽  
Asmed Asmed ◽  
Fardinal Fardinal ◽  
Yulia Sasmita Angraini

This pneumatic system tofu press machine is a press machine that is used to compress tofu starch with a capacity of 50 kg to make tofu that is ready to be marketed. The pneumatic system tofu press machine is made to make it easier to press tofu. Previously, tofu was pressed manually, namely by using a stone as a tofu press which resulted in the length of the tofu compaction process. Pressing with stones can also cause work accidents. This tofu press machine uses pneumatics as a punch driver which will press the tofu. The way this tofu machine works is by pressing the on button on the machine then the punch will move down towards the tofu essence and press the tofu. Punch paused for a moment to make sure the tofu blended in perfectly. Then press the off button on the machine to return the punch to its original position. This pneumatic system tofu press machine can reduce work accidents, lighten work, shorten processing time and is also more hygienic because it uses air as a punch driver.


2021 ◽  
Vol 112 (2) ◽  
pp. 70-76
Author(s):  
D. Abdulamer

Purpose: The useful data and information during the sand compaction process steps should be collected. Direct measurement methods of the sand mould properties during the actual moulding process are not adopted yet. Design/methodology/approach: In this work, a remote control system [1] have been integrated into a new flowability sensor [2]. Findings: To overcome the complexity of the tools and equipment that existed in laboratory, and in foundry. Research limitations/implications: In order to investigate, and control behavior of the moulding process of bentonite-bonded green sand process, the sensors have been equipped with the Bluetooth technology for a wireless transmission of the measured data to computers. Originality/value: This technique contributes to improve of the compaction process based on the non-destructive tests, enhances prediction of the optimum parameter conditions, and reduced the energy, and the compaction time consumed for the green sand moulding process.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lun Liu ◽  
Fenghui Wang ◽  
Shupeng Sun ◽  
Weiming Feng ◽  
Chao Guo

In this paper, a coupling nonlinear dynamic model of the drum and subgrade is established for the vibratory roller. The dynamic characteristics of the rigid drum of the vibratory roller in the process of vibratory compaction are comprehensively investigated by time history, phase diagram, frequency spectrum, Poincare map, and bifurcation diagram. During the compaction process, the stiffness of the subgrade increases and the motion of the rigid drum of the vibratory roller changes from a single period to multiple periods and finally enters chaos by the way of period doubling. Moreover, the roller parameters also significantly affect the dynamic characteristics of the rigid drum and the compaction effect of the subgrade. Based on detailed numerical results, a parameter adjustment strategy about the roller frequency and nominal amplitude is proposed, which can avoid the “bouncing” of the drum during compaction and improve the compaction efficiency.


Buildings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 545
Author(s):  
Miguel Valencia-Galindo ◽  
Esteban Sáez ◽  
Carlos Ovalle ◽  
Francisco Ruz

Microbial-induced carbonate precipitation (MICP) is a bio-inspired solution where bacteria metabolize urea to precipitate. This carbonate acts as a bio-cement that bonds soil particles. The existing framework has focused mainly on applying MICP through infiltration of liquid bacterial solutions in existing soil deposits. However, this technique is inefficient in soils with high fines content and low hydraulic conductivity, and thus few studies have focused on the use of MICP in fine soils. The main objective of this study was to evaluate the effect of MICP applied to compaction water in soils containing expansive clays and sandy silts. This approach searches for a better distribution of bacteria, nutrients, and calcium sources and is easy to apply if associated with a compaction process. In soils with expansive minerals, the effect of MICP in swelling potential was explored at laboratory and field scales. In sandy silts, the evolution of the stiffness and strength were studied at the laboratory scale. The treatment at the laboratory scale reduced the swelling potential; nevertheless, no significant effect of MICP was found in the field test. In sandy silts, the strength and stiffness increased under unsaturated conditions; however, subsequent saturation dissolved the cementation and the improvement vanished.


2021 ◽  
Vol 131 ◽  
pp. 103889
Author(s):  
Zaizhan An ◽  
Tianyun Liu ◽  
Qinglong Zhang ◽  
Zhaosheng Zhang ◽  
Zehua Huangfu ◽  
...  

2021 ◽  
Vol 2094 (4) ◽  
pp. 042003
Author(s):  
G E Kokieva ◽  
I P Troyanovskaya ◽  
A A Orekhovskaya ◽  
M N Kalimullin ◽  
A-M S Dzjasheev ◽  
...  

Abstract Practice of operating heavy wheeled machines (T-150K, K-700, K-701) and experimental data show that even if the average pressure of a wheel on soil is maintained, degree of its compaction increases. To explain this phenomenon, in our opinion, it is necessary to develop a mathematical model of interaction process of a deformable pneumatic with an elastic-plastic medium, which is considered to be soil subject to modern processing. Working parts of agricultural machines process a wide variety of materials, number of which is increasing, in addition, method of processing the same material is often changed in an effort to improve agricultural technology. This forces us to create new mechanisms for agriculture that were known before. Use of replaceable toothed working parts on flat-cut cultivators helps to reduce energy consumption and improve quality of non-moldboard soil cultivation. Article proposes a method for mathematical description of distribution of machine load over contact surface of a wheeled mover with deformable soil. At the same time, several assumptions and conditions were adopted, namely: volume of skeletal part of deformable soil element remains constant, independent of deformation; contact surface is a curve of two radii - in the load zone (Rl) and in the unloading zone (Ru), tire operating in driven mode has no skids; deformable soil is uniform in depth; wheel load is constant; tire radial stiffness along tread portion width is also constant in magnitude and direction; lateral pressure along deformable soil depth is small and is not taken into account in calculation.


Author(s):  
V. V. Kulakov ◽  
M. I. Pankov ◽  
V. A. Sivurova ◽  
M. S. Luchkin ◽  
A. K. Golubkov ◽  
...  

The efficiency of the pyrolytic carbon compaction process by decomposing methane in samples of a carbon-carbon composite randomly reinforced with discrete high-modulus (graphitized) carbon fibers with different densities is investigated. The analysis of the test results of samples for determining the compressive strength, determining the densities of samples after compaction with pyrocarbon and after compaction by impregnation and carbonization under pressure is carried out. Scanning electron microscopy (SEM) was used to study the structure of material samples with different initial density values.


2021 ◽  
Vol 56 (4) ◽  
pp. 323-329
Author(s):  
Ilham Ary Wahyudie

The paper describes the optimization of the hot compaction process to simultaneously increase hardness and decrease the wear coefficient of zirconium silicate reinforced BMCs. L9 orthogonal array is chosen for setup the experiment. Examining the influencing parameters is carried out on factors such as pressure, temperature, particle size, and particle content. Grey relation analysis is used to investigate to produce an optimal combination of parameter levels. The transmission electron scanning is used to study the morphology of zirconium silicate. The wear coefficient of the specimen was investigated by using the weight loss method. A scanning electron microscope was carried out to evaluate the wear track surface of the composite. The test results show that the particle size is the most influential hot compaction parameter. The optimal conditions for the hot compacting process are the temperature level at 350 °C, the pressure level at the 400 MPa level, the particle content level at 12 % weight, and the particle size level at 80 µm. In this optimal condition, the prediction GR-Grade value is 0.695. The validation test results showed that the GR-Grade value increased by 0.15, the hardness increased by 25%, and the wear coefficient decreased by 53%. This optimization method with Gray Relational Analysis has proven to be effective in the hot compaction process for improving the tribology behavior of the composites.


2021 ◽  
Vol 5 (8) ◽  
pp. 224
Author(s):  
Gaurav Bajpai ◽  
Anuradha Tiwari ◽  
Rajesh Purohit ◽  
Vijay Panchore ◽  
Rashmi Dwivedi ◽  
...  

In the present scenario, weight diminution and strength enrichment are the main requirements for escalating the application of a nano composite material in different sectors. Several industrial sectors, such as automobile, defense and aerospace, are making various components of nano composites with the help of powder metallurgy processing. In this study, Al nanoTiCp composites (2, 4 and 6 wt %) were contrived through modified powder metallurgy (PM) techniques with the help of Cold Isostatic Compaction process (CIP). The mechanical properties such as density, porosity, micro-hardness, compressive strength and indirect tensile strength were increasing with the reinforcement of nanoTiCp particles up to 4 wt % in Al metal matrix composites. Nevertheless, clustering of nanoTiCp particles were found at 6 wt %, which is also observed in SEM images.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4629
Author(s):  
Przemysław Brzyski ◽  
Piotr Gleń ◽  
Mateusz Gładecki ◽  
Monika Rumińska ◽  
Zbigniew Suchorab ◽  
...  

The aim of the research presented in the article was to check the differences in the hygro-thermal and mechanical properties of hemp-lime composites with different shives fractions, depending on the direction of mixture compaction. The research part of the paper presents the preparation method and investigation on the composites. Thermal conductivity, capillary uptake, as well as flexural and compressive strengths were examined. Additionally, an analysis of the temperature distribution in the external wall insulated with the tested composites was performed. The results confirm that the direction of compaction influences the individual properties of the composites in a similar way, depending on the size of the shives. The differences are more pronounced in the case of the composite containing longer fractions of shives. Both thermal conductivity of the material and the capillary uptake ability are lower in the parallel direction of the compaction process. Composites exhibit greater stiffness, but they fail faster with increasing loads when loaded in the direction perpendicular to compaction.


Sign in / Sign up

Export Citation Format

Share Document