Model development for fragment-size distribution based on upper-limit log-normal distribution

2019 ◽  
Vol 349 ◽  
pp. 86-91 ◽  
Author(s):  
J. Kim ◽  
H.C. NO
1975 ◽  
Vol 47 (6) ◽  
pp. 454-461
Author(s):  
Devendra Sahal

This study attempts to explain why farm structure in Finland is what it is. The static aspects of size distribution are summarised by means of log-normal distribution and tested with respect to data on more than 500 communes for years 1959 and 1969. As to the dynamic aspects, despite some correlation between percentage growth and size at the beginning of the time period and which is believed to be partly spurious, the observed phenomena do not seem to be incompatible with the proposed version of law of proportionate effect. The latter need not be observed at every point in time.


2019 ◽  
Vol 43 (4) ◽  
pp. 692-698 ◽  
Author(s):  
A.A. Zhirnov ◽  
O.B. Kudrjashova

This study is focused on enhancing the informativity of optical measurement techniques for particulate matter. The problem is that the description of particulate matter with bimodal and multimodal distributions by an a priori defined analytical function of particle size distribution (for example, a log-normal distribution) is not accurate enough. Here, we explore if experimental data can be approximated by a multivariable function of particle size distribution instead of using the a priori defined log-normal distribution. For the comparison of the approximation results, experiments are conducted on standard samples with granulometric compositions OGS-01LM and OGS-08LM separately and jointly in a mix. The experimental data are recorded by a high-selectivity turbidimetric technique in water suspensions of these samples. The purpose of this study is to present the measurement results as a distribution function that enables one to identify more accurately the particle-size distribution profile and the corresponding disperse characteristics of the aerosol in question when measuring parameters of disperse media by optical techniques. The main objective of this work is to develop, implement and verify a search algorithm for the particle-size distribution function by way of a multi-parameter function. We show that the solution to the problem proposed herein is more universal because it allows slow and fast processes in suspensions and aerosols to be examined with a lower error. The algorithm can be applied to the problems which are based on solving first-kind Fredholm equations.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 102 ◽  
Author(s):  
Xue Bai ◽  
Yang Zhao ◽  
Jian Ma ◽  
Yunxi Liu ◽  
Qiwu Wang

Average grain size is usually used to describe a polycrystalline medium; however, many investigations demonstrate the grain-size distribution has a measurable effect on most of mechanical properties. This paper addresses the experimental quantification for the effects of grain-size distribution on attenuation in α-titanium alloy by laser ultrasonics. Microstructures with different mean grain sizes of 26–49 μm are obtained via annealing at 800 °C for different holding times, having an approximately log-normal distribution of grain sizes. Experimental measurements were examined by using two different theoretical models: (i) the classical Rokhlin’s model considering a single mean grain size, and (ii) the improved Turner’s model incorporating a log-normal distribution of grain sizes in the attenuation evaluation. Quantitative agreement between the experiment and the latter model was found in the Rayleigh and the Rayleigh-to-stochastic transition regions. A larger attenuation level was exhibited than the classical theoretical prediction considering a single mean grain size, and the frequency dependence of attenuation reduced from a classical fourth power to an approximately second power due to a greater probability of large grains than the assumed Poisson statistics. The provided results would help support the use of laser ultrasound technology for the non-destructive evaluation of grain size distribution in polycrystalline materials.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 64
Author(s):  
Arnaud Millet

The mechanosensitivity of cells has recently been identified as a process that could greatly influence a cell’s fate. To understand the interaction between cells and their surrounding extracellular matrix, the characterization of the mechanical properties of natural polymeric gels is needed. Atomic force microscopy (AFM) is one of the leading tools used to characterize mechanically biological tissues. It appears that the elasticity (elastic modulus) values obtained by AFM presents a log-normal distribution. Despite its ubiquity, the log-normal distribution concerning the elastic modulus of biological tissues does not have a clear explanation. In this paper, we propose a physical mechanism based on the weak universality of critical exponents in the percolation process leading to gelation. Following this, we discuss the relevance of this model for mechanical signatures of biological tissues.


Sign in / Sign up

Export Citation Format

Share Document