Study on convective heat transfer correlations for sodium-to-sodium heat exchanger based on STELLA-1 experimental results

2021 ◽  
Vol 371 ◽  
pp. 110963
Author(s):  
Jonggan Hong ◽  
Jewhan Lee ◽  
Jaehyuk Eoh
2021 ◽  
Author(s):  
M. Habibur Rahman ◽  
Emdadul Haque Chowdhury ◽  
Didarul Ahasan Redwan ◽  
Hasib A. Prince ◽  
M. Ruhul Amin

2020 ◽  
Vol 10 (15) ◽  
pp. 5225
Author(s):  
Barbara Arevalo-Torres ◽  
Jose L. Lopez-Salinas ◽  
Alejandro J. García-Cuéllar

The curved geometry of a coiled flow inverter (CFI) promotes chaotic mixing through a combination of coils and bends. Besides the heat exchanger geometry, the heat transfer can be enhanced by improving the thermophysical properties of the working fluid. In this work, aqueous solutions of dispersed TiO2 nanometer-sized particles (i.e., nanofluids) were prepared and characterized, and their effects on heat transfer were experimentally investigated in a CFI heat exchanger inserted in a forced convective thermal loop. The physical and transport properties of the nanofluids were measured within the temperature and volume concentration domains. The convective heat transfer coefficients were obtained at Reynolds numbers (NRe) and TiO2 nanoparticle volume concentrations ranging from 1400 to 9500 and 0–1.5 v/v%, respectively. The Nusselt number (NNu) in the CFI containing 1.0 v/v% nanofluid was 41–52% higher than in the CFI containing pure base fluid (i.e., water), while the 1.5 v/v% nanofluid increased the NNu by 4–8% compared to water. Two new correlations to predict the NNu of TiO2–water nanofluids in the CFI at Reynolds numbers of 1400 ≤ NRe ≤ 9500 and nanoparticle volume concentrations ranges of 0.2–1.0 v/v% and 0.2–1.5 v/v% are proposed.


Author(s):  
Yantao Li ◽  
Yulong Ji ◽  
Katsuya Fukuda ◽  
Qiusheng Liu ◽  
Hongbin Ma

Abstract In this paper, the forced convective heat transfer of FC-72 was experimentally investigated for various of parameters like velocity, inlet temperature, tube size, and exponential period of heat generation rate. Circular tubes with different inner diameters (1, 1.8 and 2.8 mm) and heated lengths (30–50 mm) were used in this study. The experiment data suggest that the single-phase heat transfer coefficient increases with increasing flow velocity as well as decreasing tube diameter and ratio of heated length to inner diameter. The experiment data were nondimensionalized to study the effect of Reynolds number (Red) on forced convection heat transfer. The results indicate that the relation between Nusselt numbers (Nud) and Red for d = 2.8 mm show the same trend as the conventional correlations. However, the Nud for d = 1 and 1. 8 mm depend on Red in a different manner. The conventional heat transfer correlations are not adequate for prediction of forced convective heat transfer in mini channels. The heat transfer correlations for FC-72 in vertical small tubes with diameters of 1, 1.8 and 2.8 mm were developed separately based on the experiment data. The differences between experimental and predicted Nud are within ±15%.


Sign in / Sign up

Export Citation Format

Share Document