QCD constraints on the equation of state for compact stars

2016 ◽  
Vol 956 ◽  
pp. 813-816
Author(s):  
E.S. Fraga ◽  
A. Kurkela ◽  
J. Schaffner-Bielich ◽  
A. Vuorinen
2012 ◽  
Vol 8 (S291) ◽  
pp. 536-536
Author(s):  
Martin Urbanec ◽  
John Miller ◽  
Zdenek Stuchlik

AbstractWe present quadrupole moments of rotating neutron and strange stars calculated using standard Hartle Thorne approach. We demonstrate differences between neutron and strange star parameters connected with quadrupole moments and how this parameters could be, in the case of neutron stars, approximated almost independently on neutron star equation of state.


2019 ◽  
Vol 99 (6) ◽  
Author(s):  
D. E. Alvarez-Castillo ◽  
D. B. Blaschke ◽  
A. G. Grunfeld ◽  
V. P. Pagura

2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Shinji Maedan

Abstract We study a compact star made of degenerate hidden-sector nucleons which will be a candidate for cold dark matter. A hidden sector like quantum chromodynamics is considered, and as the low-energy effective theory we take the (hidden-sector) $ SU(2) $ chiral sigma model including a hidden-sector vector meson. With the mean field approximation, we find that one can treat the equation of state (EOS) of our model analytically by introducing a variable which depends on the Fermi momentum. The EOS is specified by the two parameters $ C'_{\sigma} $, $ C'_{\omega} $, and we discuss how these parameters affect the mass–radius relation for a compact star as well as the EOS. The dependence of the maximum stable mass of compact stars on the parameter $ C'_{\sigma} $ will also be discussed.


Author(s):  
BRUNO FRANZON ◽  
F. S. NAVARRA ◽  
DAVID FOGAÇA

Using an equation of state based on a mean-field approximation for QCD (MQCD) to describe the cold quark gluon plasma we study the stellar structure of compact stars.


Universe ◽  
2018 ◽  
Vol 4 (1) ◽  
pp. 14 ◽  
Author(s):  
Sylvain Mogliacci ◽  
Isobel Kolbé ◽  
W. Horowitz

In this article, we start by presenting state-of-the-art methods allowing us to compute moments related to the globally conserved baryon number, by means of first principle resummed perturbative frameworks. We focus on such quantities for they convey important properties of the finite temperature and density equation of state, being particularly sensitive to changes in the degrees of freedom across the quark-hadron phase transition. We thus present various number susceptibilities along with the corresponding results as obtained by lattice quantum chromodynamics collaborations, and comment on their comparison. Next, omitting the importance of coupling corrections and considering a zero-density toy model for the sake of argument, we focus on corrections due to the small size of heavy-ion collision systems, by means of spatial compactifications. Briefly motivating the relevance of finite size effects in heavy-ion physics, in opposition to the compact star physics, we present a few preliminary thermodynamic results together with the speed of sound for certain finite size relativistic quantum systems at very high temperature.


2019 ◽  
Vol 100 (2) ◽  
Author(s):  
K. Maslov ◽  
N. Yasutake ◽  
D. Blaschke ◽  
A. Ayriyan ◽  
H. Grigorian ◽  
...  

Author(s):  
Manuel Malaver ◽  
Hamed Daei Kasmaei

In this paper, we present some new models for anisotropic compact stars within the framework of 5-dimensional Einstein-Gauss-Bonnet (EGB) gravity with a linear and nonlinear equation of state considering a metric potential proposed for Thirukkanesh and Ragel (2012) and generalized for Malaver (2014). The new obtained models satisfy all physical requirements of a physically reasonable stellar object. Variables as energy density, radial pressure and the anisotropy are dependent of the values of the Gauss-Bonnet coupling constant


Sign in / Sign up

Export Citation Format

Share Document