scholarly journals Non-Diagonal Charged Lepton Mass Matrix, the TBM and Non-Zero θ13

2016 ◽  
Vol 273-275 ◽  
pp. 2684-2686
Author(s):  
Alma D. Rojas
Keyword(s):  
2013 ◽  
Vol 718 (4-5) ◽  
pp. 1413-1420 ◽  
Author(s):  
J. Alberto Acosta ◽  
Alfredo Aranda ◽  
Manuel A. Buen-Abad ◽  
Alma D. Rojas
Keyword(s):  

2013 ◽  
Vol 28 (39) ◽  
pp. 1350184
Author(s):  
RENATA JORA ◽  
JOSEPH SCHECHTER ◽  
M. NAEEM SHAHID

We obtain analytical formulas which connect the neutrino masses and the leptonic mixing matrix with the entries in the mass matrix for the approximation in which the charged lepton mixing matrix is the unit matrix. We also extract the CP violation phase and determine the conditions in which this is present.


2006 ◽  
Vol 21 (25) ◽  
pp. 1917-1921 ◽  
Author(s):  
ERNEST MA

The discrete subgroup Δ(27) of SU(3) has some interesting properties which may be useful for understanding charged-lepton and neutrino mass matrices. Assigning leptons to the 3 and [Formula: see text] representations of Δ(27), a simple form of the Majorana neutrino mass matrix is obtained and compared to present data.


2018 ◽  
Vol 33 (39) ◽  
pp. 1850230
Author(s):  
Yoshio Koide ◽  
Hiroyuki Nishiura

Recently, we have proposed a quark mass matrix model based on U(3) × U(3)[Formula: see text] family symmetry, in which up- and down-quark mass matrices [Formula: see text] and [Formula: see text] are described only by complex parameters [Formula: see text] and [Formula: see text], respectively. When we use charged lepton masses as additional input values, we can successfully obtain predictions for quark masses and Cabibbo–Kobayashi–Maskawa mixing. Since we have only one complex parameter [Formula: see text] for each mass matrix [Formula: see text], we can obtain a parameter-independent mass relation by using three equations for [Formula: see text], [Formula: see text] and [Formula: see text], where [Formula: see text] ([Formula: see text]). In this paper, we investigate the parameter-independent feature of the quark mass relation in the model.


2013 ◽  
Vol 28 (33) ◽  
pp. 1330030 ◽  
Author(s):  
AHMED RASHED ◽  
ALAKABHA DATTA

We introduce a 2–3 symmetric structure of the charged lepton mass matrix except for one breaking by the muon mass. Symmetry breaking effects are provided both in the charged lepton and the neutrino sector to produce corrections to the leptonic mixing and explain the recent θ13 measurements. A model that extends the SM by three right-handed neutrinos, an extra Higgs doublet, and multi-singlet scalars is introduced to generate the leptonic mixing.


2016 ◽  
Vol 31 (04n05) ◽  
pp. 1650002
Author(s):  
Debasish Borah

We revisit the possibility of relating lepton mixing angles with lepton mass hierarchies in a model-independent way. Guided by the existence of such relations in the quark sector, we first consider all the mixing angles, both in charged lepton and neutrino sectors to be related to the respective mass ratios. This allows us to calculate the leptonic mixing angles observed in neutrino oscillations as functions of the lightest neutrino mass. We show that for both normal and inverted hierarchical neutrino masses, this scenario does not give rise to correct leptonic mixing angles. We then show that correct leptonic mixing angles can be generated with normal hierarchical neutrino masses if the relation between mixing angle and mass ratio is restricted to 1–2 and 1–3 mixing in both charged lepton and neutrino sectors leaving the 2–3 mixing angles as free parameters. We then restrict the lightest neutrino mass as well as the difference between 2–3 mixing angles in charged lepton and neutrino sectors from the requirement of producing correct leptonic mixing angles. We constrain the lightest neutrino mass to be around 0.002 eV and leptonic Dirac CP phase [Formula: see text] such that [Formula: see text]. We also construct the leptonic mass matrices in terms of 2–3 mixing angles and lightest neutrino mass and briefly comment on the possibility of realizing texture zeros in the neutrino mass matrix.


1996 ◽  
Vol 11 (36) ◽  
pp. 2849-2859 ◽  
Author(s):  
YOSHIO KOIDE

On the basis of a seesaw-type mass matrix model for quarks and leptons, [Formula: see text] where mL∝mR are universal for f=u, d, v and e (up-quark, downquark, neutrino and charged lepton sectors respectively), and MF has a form [(unit matrix)+(democratic-type matrix)], neutrino masses and mixings are investigated. We try to understand a large vµ−vτ mixing, i.e. sin2 2θ23~1, with mv1 ≪ mv2~mv3, which has been suggested by the atmospheric neutrino data.


Sign in / Sign up

Export Citation Format

Share Document