Hydroelastic response of a very large floating structure over a variable bottom topography

2005 ◽  
Vol 32 (17-18) ◽  
pp. 2040-2052 ◽  
Author(s):  
Jo Hyun Kyoung ◽  
Sa Young Hong ◽  
Byoung Wan Kim ◽  
Seok Kyu Cho
2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Le Zhu ◽  
Fei Shao ◽  
Qian Xu ◽  
Yonggang Sun ◽  
Qingna Ma

The hydroelastic response of a very large floating structure in regular waves suffering an external moving point load is considered. The linearized velocity potential theory is adopted to describe the fluid flow. To take into account the coupled effects of the structure deformation and fluid motion, the structure is divided into multiple segments and connected by an elastic beam. Then through adding a stiffness matrix arising from the elastic beam into the multiple bodies coupled motion equations, the hydroelastic response is considered. By applying the Fourier transform to the obtained frequency domain coefficients, the motion equation is transformed into the time domain and the external point load is further considered. The accuracy and effectiveness of the proposed method are verified through the comparison with experimental results. Finally, extensive results are provided, and the effects of the moving point load on the hydroelastic response of the very large floating structure are investigated in detail.


Author(s):  
Xujun Chen ◽  
Torgeir Moan ◽  
Xuefeng Tang

Hydroelasticity theory considering the second-order fluid forces induced by the coupling of first-order wave potentials is introduced briefly in this paper. Based on this theory, four types of multidirectional irregular wave samplings are introduced, the frequency steps Δω of the four samplings are 0.04, 0.04, 0.02 and 0.01 rad/s, and the corresponding numbers of wave components N are 17, 75, 147 and 285 respectively. The result of principal coordinates and displacements of a very large floating structure (VLFS) for the four types of sampling are presented and discussed. The influence of the sampling is analyzed. The conclusions show that the sampling of the multidirectional irregular waves influence the second-order hydroelastic response of the VLFS. The accuracy and the computer time of the calculating with sampling of frequency step Δω = 0.02 rad/s are acceptable.


2011 ◽  
Vol 38 (17-18) ◽  
pp. 1957-1966 ◽  
Author(s):  
R.P. Gao ◽  
Z.Y. Tay ◽  
C.M. Wang ◽  
C.G. Koh

Sign in / Sign up

Export Citation Format

Share Document