Sequential assimilation in the wind wave model for simulations of typhoon events around Taiwan Island

2011 ◽  
Vol 38 (2-3) ◽  
pp. 456-467 ◽  
Author(s):  
Tai-Wen Hsu ◽  
Jian-Ming Liau ◽  
Jaw-Guei Lin ◽  
Jinhai Zheng ◽  
Shan-Hwei Ou
Keyword(s):  
Author(s):  
Fedor Gippius ◽  
Fedor Gippius ◽  
Stanislav Myslenkov ◽  
Stanislav Myslenkov ◽  
Elena Stoliarova ◽  
...  

This study is focused on the alterations and typical features of the wind wave climate of the Black Sea’s coastal waters since 1979 till nowadays. Wind wave parameters were calculated by means of the 3rd-generation numerical spectral wind wave model SWAN, which is widely used on various spatial scales – both coastal waters and open seas. Data on wind speed and direction from the NCEP CFSR reanalysis were used as forcing. The computations were performed on an unstructured computational grid with cell size depending on the distance from the shoreline. Modeling results were applied to evaluate the main characteristics of the wind wave in various coastal areas of the sea.


1994 ◽  
Vol 20 (4) ◽  
pp. 613-624 ◽  
Author(s):  
Stephen Clodman
Keyword(s):  

2010 ◽  
Vol 34 (8) ◽  
pp. 1984-1999 ◽  
Author(s):  
Ahmadreza Zamani ◽  
Ahmadreza Azimian ◽  
Arnold Heemink ◽  
Dimitri Solomatine

Author(s):  
Fei Duan ◽  
Zhiqiang Hu ◽  
Jin Wang

Wind power has great potential because of its clean and renewable production compared to the traditional power. Most of the present researches for floating wind turbine rely on the hydro-aero-elastic-servo simulation codes and have not been exhaustively validated yet. Thus, model tests are needed and make sense for its high credibility to master the kinetic characters of floating offshore structures. The characters of kinetic responses of the spar-type wind turbine are investigated through model test research technique. This paper describes the methodology for wind/wave model test that carried out at Deepwater Offshore Basin in Shanghai Jiao Tong University at a scale of 1:50. A Spar-type floater was selected to support the wind turbine in this test and the model blade was geometrically scaled down from the original NREL 5 MW reference wind turbine blade. The detail of the scaled model of wind turbine and the floating supporter, the test set-up configuration, the mooring system, the high-quality wind generator that can create required homogeneous and low turbulence wind, and the instrumentations to capture loads, accelerations and 6 DOF motions are described in detail, respectively. The isolated wind/wave effects and the integrated wind-wave effects on the floating wind turbine are analyzed, according to the test results.


2002 ◽  
Vol 29 (11) ◽  
pp. 1357-1390 ◽  
Author(s):  
W.E. Rogers ◽  
J.M. Kaihatu ◽  
H.A.H. Petit ◽  
N. Booij ◽  
L.H. Holthuijsen

2008 ◽  
Vol 136 (3) ◽  
pp. 1217-1223 ◽  
Author(s):  
Il-Ju Moon ◽  
Isaac Ginis ◽  
Tetsu Hara

Abstract Effects of new drag coefficient (Cd) parameterizations on WAVEWATCH III (WW3) model surface wave simulations are investigated. The new parameterizations are based on a coupled wind–wave model (CWW) and a wave tank experiment, and yields reduced Cd at high wind speeds. Numerical experiments for uniform winds and Hurricane Katrina (2005) indicate that the original Cd parameterization used in WW3 overestimates drag at high wind speeds compared to recent observational, theoretical, and numerical modeling results. Comparisons with buoy measurements during Hurricane Katrina demonstrate that WW3 simulations with the new Cd parameterizations yield more accurate significant wave heights compared to simulations with the original Cd parameterization, provided that accurate high-resolution wind forcing fields are used.


2017 ◽  
Vol 95 ◽  
pp. 344-357 ◽  
Author(s):  
Anna Nikishova ◽  
Anna Kalyuzhnaya ◽  
Alexander Boukhanovsky ◽  
Alfons Hoekstra

Sign in / Sign up

Export Citation Format

Share Document