Vibration analysis of a cylindrical shell coupled with interior structures using a hybrid analytical-numerical approach

2018 ◽  
Vol 154 ◽  
pp. 81-93 ◽  
Author(s):  
Meixia Chen ◽  
Lei Zhang ◽  
Kun Xie
2013 ◽  
Vol 20 (3) ◽  
pp. 531-550 ◽  
Author(s):  
Hong-Liang Dai ◽  
Hao-Jie Jiang

This article presents an analytical study for forced vibration of a cylindrical shell which is composed of a functionally graded piezoelectric material (FGPM). The cylindrical shell is assumed to have two-constituent material distributions through the thickness of the structure, and material properties of the cylindrical shell are assumed to vary according to a power-law distribution in terms of the volume fractions for constituent materials, the exact solution for the forced vibration problem is presented. Numerical results are presented to show the effect of electric excitation, thermal load, mechanical load and volume exponent on the static and force vibration of the FGPM cylindrical shell. The goal of this investigation is to optimize the FGPM cylindrical shell in engineering, also the present solution can be used in the forced vibration analysis of cylindrical smart elements.


Sign in / Sign up

Export Citation Format

Share Document