Hydrodynamic performance of a newly-designed Antarctic krill trawl using numerical simulation and physical modeling methods

2019 ◽  
Vol 179 ◽  
pp. 173-179 ◽  
Author(s):  
Rong Wan ◽  
Mingxiu Jia ◽  
Qinglong Guan ◽  
Liuyi Huang ◽  
Hui Cheng ◽  
...  
2021 ◽  
Vol 9 (5) ◽  
pp. 462
Author(s):  
Yuchen Shang ◽  
Juan J. Horrillo

In this study we investigated the performance of NACA 0012 hydrofoils aligned in tandem using parametric method and Neural Networks. We use the 2D viscous numerical model (STAR-CCM+) to simulate the hydrofoil system. To validate the numerical model, we modeled a single NACA 0012 configuration and compared it to experimental results. Results are found in concordance with the published experimental results. Then two NACA 0012 hydrofoils in tandem configuration were studied in relation to 788 combinations of the following parameters: spacing between two hydrofoils, angle of attack (AOA) of upstream hydrofoil and AOA of downstream hydrofoil. The effects exerted by these three parameters on the hydrodynamic coefficients Lift coefficient (CL), Drag Coefficient (CD) and Lift-Drag Ratio (LDR), are consistent with the behavior of the system. To establish a control system for the hydrofoil craft, a timely analysis of the hydrodynamic system is needed due to the computational resource constraints, analysis of a large combination and time consuming of the three parameters established. To provide a broader and faster way to predict the hydrodynamic performance of two hydrofoils in tandem configuration, an optimal artificial neural network (ANN) was trained using the large combination of three parameters generated from the numerical simulations. Regression analysis of the output of ANN was performed, and the results are consistent with numerical simulation with a correlation coefficient greater than 99.99%. The optimized spacing of 6.6c are suggested where the system has the lowest CD while obtaining the highest CL and LDR. The formula of the ANN was then presented, providing a reliable predicting method of hydrofoils in tandem configuration.


1997 ◽  
Vol 52 (21-22) ◽  
pp. 3787-3793 ◽  
Author(s):  
A. Cockx ◽  
A. Liné ◽  
M. Roustan ◽  
Z. Do-Quang ◽  
V. Lazarova

2021 ◽  
Author(s):  
Weigang Huang ◽  
Donglei Zhang ◽  
Jiawei Yu ◽  
Tao He ◽  
Xianzhou Wang

Abstract AUV (Autonomous Underwater Vehicle) recovery is considerably influenced by the nearby flow field and simulations of AUV in different motion paths in the wake of a submarine with a propeller are presented in this paper. A commercial CFD solver STAR CCM+ has been used to research the motion and flow characteristics of AUV, which using the advanced computational continuum mechanics algorithms. The DARPA (Defense Advanced Research Projects Agency) SUBOFF Submarine (L1 = 4.356m) propelled with INSEAN (Italian Ship Model Basin) E1619 propeller is used in this study, and the self-propulsion characteristics of the propeller at an incoming flow velocity of 2.75m/s are obtained through numerical simulation and results are compared with the available experimental data to prove the accuracy of the chosen investigation methodology. A grid/time-step convergence test is performed for verification study. AUV (L2 = 0.4356m) is a smaller-scale SUBOFF without a sail, which approaches the submarine in different motion paths in the submarine wake at a relative speed combined with the dynamic overlapping grid technology. The hydrodynamic performance of the AUV when approaching the submarine and the velocity distribution of the surrounding flow field are analyzed, which provides a useful reference for underwater recovery of the AUV.


2018 ◽  
Vol 11 (2) ◽  
pp. 60-65
Author(s):  
Светлана Сазонова ◽  
Svetlana Sazonova ◽  
Вячеслав Манохин ◽  
Vyacheslav Manohin ◽  
Сергей Николенко ◽  
...  

Author(s):  
Peter Christiansen ◽  
Jesper H Hattel ◽  
Niels Bay ◽  
Paulo AF Martins

Numerical simulation and physical modeling performed on small-scale ingots made from pure lead, having a hole drilled through their centerline to mimic porosity, are utilized to characterize the deformation mechanics of a single open die forging compression stage and to identify the influence of the lower V-die angle on porosity closure and forging load requirements of large cast ingots. Results show that a lower V-die angle of 120° provides the best closure of centerline porosity without demanding the highest forging loads or developing unreasonably asymmetric shapes that may create difficulties in multi-stage open die forging procedures.


2016 ◽  
Vol 23 (4) ◽  
pp. 73-83 ◽  
Author(s):  
Zhang Zhiyang ◽  
Ma Yong ◽  
Jiang Jin ◽  
Liu Weixing ◽  
Ma Qingwei

Abstract Vertical-axial tidal current turbine is the key for the energy converter, which has the advantages of simple structure, adaptability to flow and uncomplex convection device. It has become the hot point for research and application recently. At present, the study on the hydrodynamic performance of vertical-axial tidal current turbine is almost on 2-D numerical simulation, without the consideration of 3-D effect. CFD (Computational Fluid Dynamics) method and blade optimal control technique are used to improve accuracy in the prediction of tidal current turbine hydrodynamic performance. Numerical simulation of vertical-axial tidal current turbine is validated. Fixed and variable deflection angle turbine are comparatively studied to analysis the influence of 3-D effect and the character of fluid field and pressure field. The method, put the plate on the end of blade, of reduce the energy loss caused by 3-D effect is proposed. The 3-D CFD numerical model of vertical-axial tidal current turbine hydrodynamic performance in this study may provide theoretical, methodical and technical reference for the optimal design of turbine.


Sign in / Sign up

Export Citation Format

Share Document