Ship weather routing: A taxonomy and survey

2020 ◽  
Vol 213 ◽  
pp. 107697 ◽  
Author(s):  
Thalis P.V. Zis ◽  
Harilaos N. Psaraftis ◽  
Li Ding
Keyword(s):  
Author(s):  
Roshamida Abd Jamil ◽  
Jean-Christophe Gilloteaux ◽  
Philippe Lelong ◽  
Aurélien Babarit

Abstract The energy ship concept has been proposed as an alternative wind power conversion system to harvest offshore wind energy. Energy ships are ships propelled by the wind and which generate electricity by means of water turbines attached underneath their hull, The generated electricity is stored on-board (batteries, hydrogen, etc.) It has been shown that energy ships deployed far-offshore in the North Atlantic Ocean may achieve capacity factors over 80% using weather-routing. The present paper complements this research by investigating the capacity factors of energy ships harvesting wind power in the near-shore. Two case studies are considered: the French islands of Saint-Pierre et-Miquelon, near Canada, and Ile de Sein, near metropolitan France. The methodology is as follows. First, the design of the energy ship considered in this study is presented. It was developed using an in-house Velocity, and Power Performance Program (VPPP) developed at LHEEA. The velocity and power production polar plots of the ship were used as input to a modified version of the weather-routing software QtVlm. This software was then used for capacity factor optimization using 10m altitude wind data analysis which was extracted from the ERA-Interim dataset provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Three years (2015, 2016, and 2017) data are considered. The results show that average capacity factors of approximately 40% and 40% can be achieved at Ile de Sein and Saint-Pierre-et-Miquelon with considered energy ship design.


2004 ◽  
Vol 111 (0) ◽  
pp. 259-266 ◽  
Author(s):  
Kyoko TAKASHIMA ◽  
Hideki HAGIWARA ◽  
Ruri SHOJI

1987 ◽  
Vol 40 (1) ◽  
pp. 96-119 ◽  
Author(s):  
H. Hagiwara ◽  
J. A. Spaans

This paper reports on a study conducted during the academic year 1985–6 by Assistant Professor H. Hagiwara of the University of Mercantile Marine in Tokyo and Professor J. A. Spaans of Delft University of Technology.


2020 ◽  
Vol 8 (4) ◽  
pp. 270 ◽  
Author(s):  
Silvia Pennino ◽  
Salvatore Gaglione ◽  
Anna Innac ◽  
Vincenzo Piscopo ◽  
Antonio Scamardella

This paper provides a new adaptive weather routing model, based on the Dijkstra shortest path algorithm, aiming to select the optimal route that maximizes the ship performances in a seaway. The model is based on a set of ship motion-limiting criteria and on the weather forecast maps, providing the sea state conditions the ship is expected to encounter along the scheduled route. The new adaptive weather routing model is applied to optimize the scheduled route in the Northern Atlantic Ocean of the S175 containership, assumed as a reference vessel, based on the weather forecast data provided by the Global WAve Model (GWAM). In the analysis, both wave and combined wind/swell wave conditions are embodied to investigate the incidence on the optimum route assessment. Furthermore, the effect of the vessel speed on the optimum route detection is also investigated. Current results clearly show that it is possible to achieve appreciable improvements, up to 50% of the ship seakeeping performances, without excessively increasing the route length and the voyage duration.


Author(s):  
Kazuhiro Iijima ◽  
Rika Ueda ◽  
Hitoi Tamaru ◽  
Masahiko Fujikubo

In this paper, the effect of weather routing and ship operations on the extreme vertical bending moment (VBM) in a 6000TEU class large container ship which is operated in North Atlantic Ocean is addressed. A direct time-domain nonlinear response simulation method taking account of the wave-induced vibrations is combined with a voyage simulation based on 10 years of meteorological data in the area. The probability distribution of the ship's operational parameters conditional upon the meteorological conditions is considered. It is clarified that the most severe wave condition with the significant wave height over 16 m in the area may not be encountered by the ship due to the weather routing and the extreme value is determined mostly by the wave condition much milder than the most severe in the area. It is also found out that the ship speed assumed in the most contributing sea state strongly affects the extreme value of the total VBM. It is explained by the fact that the wave-induced vibrations in the ship tend to be excited at faster speed.


Sign in / Sign up

Export Citation Format

Share Document