ASME 2021 3rd International Offshore Wind Technical Conference
Latest Publications


TOTAL DOCUMENTS

26
(FIVE YEARS 26)

H-INDEX

0
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791884768

Author(s):  
Dandan Peng ◽  
Chenyu Liu ◽  
Wim Desmet ◽  
Konstantinos Gryllias

Abstract The deployment of wind power plants in cold climate becomes ever more attractive due to the increased air density resulting from low temperatures, the high wind speeds, and the low population density. However, the cold climate conditions bring some additional challenges as itt can easily cause wind turbine blades to freeze. The frizzing ice on blades not only increases the energy required for the rotation of blades, resulting in a reduction in the power generation, but also increases the amplitude of the blades’ vibrations, which may cause the blade to break, affecting the power generation performance of the wind turbine and poses a threat to its safe operation. Current published blade icing detection methods focus on studying the blade icing mechanism, building the model and then judging if it is iced or not. These models vary with different wind turbines and working conditions, so expertise knowledge is required. However, deep learning techniques may solve the abovementioned problem based on their excellent feature learning abilities but until now, there are only few studies on wind turbine blade icing detection based on the deep learning technology. Therefore, this paper proposes a novel blade icing detection model, named two-dimensional convolutional neural network with focal loss function (FL-2DCNN). The network takes the raw data collected by the Supervisory Control and Data Acquisition (SCADA) system as input, automatically learns the correlation between the different physical parameters in the dataset, and captures the abnormal information, in order to accurately output the detection results. However, the amount of normal data collected by SCADA systems is usually much larger than the one of blade icing fault data, leading to a serious data imbalance problem. This problem makes it difficult for the network to obtain enough features related to the blade icing fault. Therefore the focal loss function is introduced to the FL-2DCNN to solve the aforementioned data imbalanced problem. The focal loss function can effectively balance the importance of normal samples and icing fault samples, so that the network can obtain more icing-related feature information from the icing fault samples, and thus the detection ability of the network can be improved. The experimental results of the proposed FL-2DCNN based on real SCADA data of wind turbines show that the proposed FL-2DCNN can effectively solve the sample imbalance problem and has significant potential in the blade icing detection task compared with other deep learning methods.


Author(s):  
Simone Di Carlo ◽  
Alessandro Fontanella ◽  
Alan Facchinetti ◽  
Sara Muggiasca ◽  
Federico Taruffi ◽  
...  

Abstract The scope of this work is to investigate if and how it is possible to estimate the incident wave elevation on a floating wind turbine, with the purpose of improved control strategies. A Kalman based algorithm is proposed, which receives as input the rigid motions of the floater and estimates the wave elevation hitting the floating platform. The structure of the observer is described and the estimator is tested numerically on the OC3-Hywind platform coupled with the 5-MW reference wind turbine from NREL. Limitations to the estimation procedure are discussed. Finally the algorithm is tested on experimental data coming from a wave basin experimental campaign on a floating wind turbine model. The algorithm still needs improvements, but results are encouraging in the development of this technology.


Author(s):  
Yang Zhou ◽  
Qing Xiao ◽  
Yuanchuan Liu ◽  
Atilla Incecik ◽  
Christophe Peyrard ◽  
...  

Abstract The present study is aimed at investigating the turbulent wind effect on FOWT through the usage of a high-fidelity computational fluid dynamics (CFD) method. This method is believed to resolve the wind field, giving us a more in-depth examination into the aerodynamics of FOWT. The work is built upon our previous studies on the modelling of a coupled aero-hydro-mooring FOWT system under regular wave and uniform wind. In the present study, we replaced the previously uniform wind with a temporal and spatial variable turbulent wind field using a time-varying spectrum. The turbulent wind is generated with Mann’s wind turbulence model while the Von Karman wind spectrum is used to represent wind turbulence. The present study shows that when turbulent wind is present, there may be fluctuations of the rotor thrust and power outputs, causing the non-uniform wake region. Despite this, both the dynamic motions and the mooring tensions of the floater are not significantly influenced by the wind turbulence under the present inflow wind conditions.


Author(s):  
Roshamida Abd Jamil ◽  
Jean-Christophe Gilloteaux ◽  
Philippe Lelong ◽  
Aurélien Babarit

Abstract The energy ship concept has been proposed as an alternative wind power conversion system to harvest offshore wind energy. Energy ships are ships propelled by the wind and which generate electricity by means of water turbines attached underneath their hull, The generated electricity is stored on-board (batteries, hydrogen, etc.) It has been shown that energy ships deployed far-offshore in the North Atlantic Ocean may achieve capacity factors over 80% using weather-routing. The present paper complements this research by investigating the capacity factors of energy ships harvesting wind power in the near-shore. Two case studies are considered: the French islands of Saint-Pierre et-Miquelon, near Canada, and Ile de Sein, near metropolitan France. The methodology is as follows. First, the design of the energy ship considered in this study is presented. It was developed using an in-house Velocity, and Power Performance Program (VPPP) developed at LHEEA. The velocity and power production polar plots of the ship were used as input to a modified version of the weather-routing software QtVlm. This software was then used for capacity factor optimization using 10m altitude wind data analysis which was extracted from the ERA-Interim dataset provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Three years (2015, 2016, and 2017) data are considered. The results show that average capacity factors of approximately 40% and 40% can be achieved at Ile de Sein and Saint-Pierre-et-Miquelon with considered energy ship design.


Author(s):  
David McLaurin ◽  
Alan Aston ◽  
John Brand

Abstract It has been observed that, although submarine power cables have a critical role to wind power arrays and power export to shore, they are often overlooked at early stages of projects and oversimplified during late stages. This leads to lack of attention given during cable design and planning, as well as pressured schedules during manufacturing, testing and installation. The significant number of incidents attributed to offshore submarine cables during construction has increased overall project risk, lowered system average power availability and increased insurance costs. Lack of proper routing can also result in an inability to maintain asset integrity for the project design life. Despite the attention that submarine power cables have received over the past few years, the number and cost of incidents does not appear to be decreasing. A comparison can be made between offshore HVAC and HVDC cables used for wind power and offshore umbilicals and MV cables used in the oil and gas sector. These umbilicals are often similar in weight, size and bending stiffness, and have similar design, manufacturing, routing and installation challenges, but with a fraction of the incidents observed with offshore wind array and export cables. An additional caveat is that the offshore oil and gas sector has achieved a reliable track record while installing and maintaining these umbilicals and cables in fully dynamic conditions (ultra-deep water) as well static conditions. One primary difference between how the oil and gas sector executes these systems are design, planning and specification from an early stage of the project. Significant attention is given at an early stage to quality control, including offshore routing and umbilical testing specifically to avoid incidents resulting in umbilical damage due to the tension and crushing forces during installation as well as ambient seawater and seabed interaction. Management of these risks are documented, and optimal mitigation strategies are implemented early in the design phase. This paper will discuss the types of incidents which have been observed during construction and installation of submarine HVAC/HVDC cables in the wind power sector and how they could have been prevented by normal practices of the offshore oil/gas sector from early design and planning all the way to installation and commissioning.


Author(s):  
Armando Alexandre ◽  
Raffaello Antonutti ◽  
Theo Gentils ◽  
Laurent Mutricy ◽  
Pierre Weyne

Abstract Floating wind is now entering a commercial-stage, and there are a significant number of commercial projects in countries like France, Japan, UK and Portugal. A floating wind project is complex and has many interdependencies and interfaces. During all stages of the project several participants are expected to use a numerical model of the whole system and not only the part the participant has to design. Examples of this are the mooring and floater designer requiring a coupled model of the whole system including also the wind turbine, the operations team requiring a model of the system to plan towing and operations. All these stakeholders require a coupled model where the hydrodynamics, aerodynamics and structural physics of the system are captured with different levels of accuracy. In this paper, we will concentrate on a simplified model for the aerodynamic loading of the turbine in idling and standstill conditions that can be easily implemented in a simulation tool used for floater, mooring and marine operations studies. The method consists of using a subset of simulations at constant wind speed (ideally close to the wind speed required for the simulations) run on a detailed turbine model on a rigid tower and fixed foundation — normally run by the turbine designer. A proxy to the aerodynamic loads on the rotor and nacelle (RNA) is to take the horizontal yaw bearing loads. The process is then repeated for a range of nacelle yaw misalignments (for example every 15° for 360°). A look-up table with the horizontal yaw bearing load for the range of wind-rotor misalignments investigated is created. The simplified model of the aerodynamic loads on the RNA consists of a fixed blade (or wing) segment located at the hub, where aerodynamic drag and lift coefficients can be specified. Using the look-up tables created using the detailed turbine model, drag and lift coefficients are estimated as a function of the angle between the rotor and the wind direction. This representation of the aerodynamic loading on the RNA was then verified against full-field turbulent wind simulations in fixed and floating conditions using a multi-megawatt commercial turbine. The results for the parameters concerning the floater, mooring and marine operations design were monitored (e.g. tower bottom loads, offsets, pitch, mooring tensions) for extreme conditions and the errors introduced by this simplified rotor are generally lower than 4%. This illustrates that this simplified representation of the turbine can be used by the various parties of the project during the early stages of the design, particularly when knowing the loading within the RNA and on higher sections of the tower is not important.


Author(s):  
Yu Wang ◽  
Hamn-Ching Chen ◽  
Guilherme Vaz ◽  
Simon Mewes

Abstract Utilization of Computational Fluid Dynamics (CFD) codes to perform hydrodynamic analysis of Floating Offshore Wind Turbines (FOWTs) is increasing recently. However, verification studies of the simulations that quantifying numerical uncertainties and permitting a detailed validation in a next phase is often disregarded. In this work, a verification study of CFD simulations of a semi-submersible FOWT design under regular waves is performed. To accomplish this goal, Response Amplitude Operators (RAOs) are derived from the computational results of the heave, surge and pitch motions. Four grids with different grid sizes with a constant refinement ratio are generated for verification of spatial convergence. Three different time increments are paired with each grid for verification of temporal convergence. The verification study is performed by estimation of the numerical errors and uncertainties using procedures proposed by Eca and Hoekstra [1].


Author(s):  
Pau Trubat ◽  
Climent Molins ◽  
Daniel Alarcon ◽  
Valentin Arramounet ◽  
Mohammad Youssef Mahfouz

Abstract LCOE reduction in FOWTs is heading to larger wind turbines in order to increase power production and capacity. NREL and DTU have recently developed a 15MW reference wind turbine, which can be used to validate the platform concepts for the next generation of wind turbines. Increasing the power of wind turbines leads to larger platforms due to the need to withstand the increase of the weight of the Nacelle Rotor Assembly, as well as the increase of the wind forces and pitching moment. Moreover, the larger the turbines and platforms the larger surge/sway and yaw unbalanced forces, which will need to be hold up by the mooring system. The mooring system has to be designed to balance the wind and wave forces and provide the stiffness needed to the FOWT for a proper behavior. Moreover, the mooring system has to achieve enough reliability to prevent line failure that could lead to a chain reaction within a floating wind farm, and thus huge loses. Then, a complete and detailed fatigue analysis should be performed in order to guarantee the performance of the FOWT during its service life. Within the CoReWind EU-2020 project, the Windcrete platform is upscaled to withstand the new EIA 15MW reference wind turbine. As concrete is used as a main material, the mass and inertia are larger than steel counterpart which leads to stiffer and more loaded mooring system. In this paper, the fatigue analysis of the Windcrete mooring system is assessed and compared using different methods.


Author(s):  
Xinran Ji ◽  
Daoru Wang

Abstract Real sea waves are multidirectional, but most of researches are focused on the unidirectional wave. Special to the numerical wave basin based on OpenFOAM to simulate the propagation of multidirectional random wave and its interaction with structure has the insufficient of large amount of calculation, to overcome this problem, a one-way coupling model is established based on the potential theory and OpenFOAM wave basin, and the amount of calculation is reduced and the computational efficiency is improved. Base on the coupling model, the multidirectional random waves and its interaction with a large-scale offshore wind turbine foundation are simulated. In the outer domain, the multidirectional random wave is generated by the potential theory quickly. The interaction of multidirectional waves with the offshore wind turbine foundation is simulated in the inner domain by solving the Navier-Stokes equation. The result shows that the wave directionality has a significant effect on the interaction of multidirectional irregular waves with cylinder.


Author(s):  
Romain Pinguet ◽  
Sam Kanner ◽  
Michel Benoit ◽  
Bernard Molin

Abstract The aim of this study is to develop a viscous numerical wave tank using a coupled solver between the wave generation and absorption toolbox waves2Foam, developed by Jacobsen et al. [1] and the overset method built in the open source CFD software OpenFOAM©. This wave tank can be used to analyze the behavior of Floating Offshore Wind Turbine (FOWT) in nonlinear waves. A mesh convergence analysis is presented on a simple 2D case in order to validate the CFD model. The results are compared to experimental data from the literature and show good agreement. The response of a floater developed for a FOWT is analyzed. The free surface elevation, heave and pitch motions are compared to experimental results from the literature. Comparisons between experimental data and numerical results are discussed.


Sign in / Sign up

Export Citation Format

Share Document