A new analytical solution for elastic flexure of thick multi-layered composite hybrid plates resting on Winkler elastic foundation in air and water

2021 ◽  
Vol 235 ◽  
pp. 109372
Author(s):  
Soheil Gohari ◽  
Saeed Mouloodi ◽  
F. Mozafari ◽  
Reza Alebrahim ◽  
N. Moslemi ◽  
...  
2013 ◽  
Vol 117 (1195) ◽  
pp. 959-967
Author(s):  
I. Guiamatsia ◽  
J. K. Ankersen ◽  
L. Iannucci

Abstract This paper examines the performance of enriching the shape functions of interface finite elements in the prediction of mixed-mode delamination. Enriching second-order interface and solid elements with the analytical solution of a beam on elastic foundation problem yields the correct displacement field ahead of the crack tip. Despite the enrichment being fixed at elements nodes, resulting in non-traceability of the crack tip location, the strategy is shown to perform consistently well, increasing the minimum element size from the typical 0·5mm to 5mm, for a range of classical mixed-mode bending (MMB) specimens.


2019 ◽  
Vol 821 ◽  
pp. 459-464
Author(s):  
Qi Gao Hu ◽  
Xu Dong Hu ◽  
Zhi Qiang Shen ◽  
Liang Yun Tao ◽  
Ze Tan

The buried pipelines or vessels and other similar structures made of homogeneous or advanced composite materials are commonly used in civil engineering and biotechnology. The radial stability problem of these structures was widely studied using the cylindrical shell model over the past years. In this paper, the linear stability of cylindrical shells resting on Winkler elastic foundation under uniformly distributed external pressure was analyzed with semi-analytical quadrature element method (QEM). As for the longitudinal direction, the radial deflection of shell was approximated by the quadrature element formulation. While the analytic trigonometric function was adopted for description of radial deflection in circumferential direction. The Numerical results of critical buckling load were compared with the semi-analytical FEM. It is found that the semi-analytical QEM possesses higher computational efficiency and applicability than semi-analytical FEM. Then, the effects of the shell length, radius, and thickness on the critical buckling pressures are systematically investigated through the parametric studies.


Author(s):  
Timour M. A. Nusirat ◽  
M. N. Hamdan

This paper is concerned with analysis of dynamic behavior of an Euler-Bernoulli beam resting on an elastic foundation. The beam is assumed to be subjected to a uniformly distributed lateral static load, have an initial quarter-sine shape deflection. At one end, the beam is assumed to be restrained by a pin, while at the other end, the beam is assumed to be restrained by a torsional and a translational linear spring. The beam is modeled by a nonlinear partial differential equation where the nonlinearity enters the governing equation through the beam axial force. In the static case, because of a unique feature of governing equation, the analysis was carried out using the theory of linear differential equations, but takes into account the effect of actual deflection on the induced axial thrust. In the dynamic case, stability analysis of the beam is carried out by calculating the nonlinear frequencies of free vibration of the beam about its static equilibrium configuration. The assumed mode method is used to discretize and find an equivalent nonlinear initial value problem. Then the harmonic balance is used to obtain an approximate solution to the nonlinear oscillator described by the equivalent initial value problem. The analyses of results were carried out for a selected range of values of the system parameters: foundation elastic stiffness, lateral load, and maximum beam edge deflection. In the static case the results are presented as characteristic curves showing the variation of the beam static deflection and associated bending moment distribution with each of the above system parameters. In the dynamic case, the presented characteristic curves show the variation of the nonlinear natural frequency corresponding to the first and the second modes over a range of each of the above system parameters.


Sign in / Sign up

Export Citation Format

Share Document