Finite-time time-varying formation control for marine surface vessels

2021 ◽  
Vol 239 ◽  
pp. 109817
Author(s):  
Cheng Zhu ◽  
Bing Huang ◽  
Yumin Su ◽  
Bin Zhou ◽  
Enhua Zhang
2017 ◽  
Vol 10 (4) ◽  
pp. 478-490 ◽  
Author(s):  
Tianyi Xiong ◽  
Zhiqiang Pu ◽  
Jianqiang Yi

Purpose The purpose of this paper is to investigate the time-varying finite-time formation tracking control problem for multiple unmanned aerial vehicle systems under switching topologies, where the states of the unmanned aerial vehicles need to form desired time-varying formations while tracking the trajectory of the virtual leader in finite time under jointly connected topologies. Design/methodology/approach A consensus-based formation control protocol is constructed to achieve the desired formation. In this paper, the time-varying formation is specified by a piecewise continuously differentiable vector, while the finite-time convergence is guaranteed by utilizing a non-linear function. Based on the graph theory, the finite-time stability of the close-loop system with the proposed control protocol under jointly connected topologies is proven by applying LaSalle’s invariance principle and the theory of homogeneity with dilation. Findings The effectiveness of the proposed protocol is verified by numerical simulations. Consequently, the proposed protocol can successfully achieve the predefined time-varying formation in finite time under jointly connected topologies while tracking the trajectory generated by the leader. Originality/value This paper proposes a solution to simultaneously solve the control problems of time-varying formation tracking, finite-time convergence, and switching topologies.


Author(s):  
Chunqiang Wu ◽  
Meijiao Zhao ◽  
Cheng Min ◽  
Yueying Wang ◽  
Jun Luo

In this paper, a leader–follower formation control strategy is presented based on adaptive neural network and disturbance observer, which is aimed at resolving model uncertainties as well as the time-varying disturbances for autonomous underactuated surface vessels. The model uncertainties which can be expressed by unknown nonlinear functions are approximated and compensated by the adaptive neural network. The disturbance observer introduced can estimate time-varying disturbances and compensate them to the feedforward control loop, so as to make the external time-varying disturbances suppressed and the robustness of controller against the disturbances improved. The dynamic surface control technology is applied in the procedure of designing the controller through utilizing the backstepping method, which solves the computational explosion of the derivative of virtual control signals. Finally, through Lyapunov analysis, the stability of adaptive neural formation control system is proved and all the error signals uniformly converge to a very small range ultimately. The excellent performance of the presented formation control strategy is demonstrated through numerical simulations.


2020 ◽  
Vol 8 (4) ◽  
pp. 275
Author(s):  
Lu Wang ◽  
Changkui Xu ◽  
Jianhua Cheng

This paper proposes a finite-time output feedback methodology for the path-following task of marine surface vessels. First, a horizontal path-following model is established with unknown sideslip angle, unmeasured system state and system uncertainties. A hierarchical control structure is adopted to deal with the cascade property. For kinematics system design, a finite-time sideslip angle observer is first proposed, and thus the sideslip angle estimation is compensated in a nonlinear line-of-sight (LOS) guidance strategy to acquire finite-time convergence. For the heading control design, an extended state observer is introduced for the unmeasured state and equivalent disturbance estimation, based on which an output feedback backstepping approach is proposed for the desired tracking of command course angle. The global stability of the cascade system is analyzed. Simulation results validate the effectiveness of the proposed methodology.


Sign in / Sign up

Export Citation Format

Share Document