Experimental and numerical investigations of regular head wave effects on cable tension of a subsea module during lowering operations

2021 ◽  
Vol 239 ◽  
pp. 109822
Author(s):  
Yingfei Zan ◽  
Ruinan Guo ◽  
Yanzhuo Xue ◽  
Xu Bai ◽  
Peilin Liu ◽  
...  
2017 ◽  
Vol 9 (6) ◽  
Author(s):  
Sana Baklouti ◽  
Eric Courteille ◽  
Stéphane Caro ◽  
Mohamed Dkhil

In this paper, dynamic modeling of cable-driven parallel robots (CDPRs) is addressed where each cable length is subjected to variations during operation. It is focusing on an original formulation of cable tension, which reveals a softening behavior when strains become large. The dynamic modulus of cable elasticity is experimentally identified through dynamic mechanical analysis (DMA). Numerical investigations carried out on suspended CDPRs with different sizes show the effect of the proposed tension formulation on the dynamic response of the end-effector.


Author(s):  
Kenneth S. Vecchio

Shock-induced reactions (or shock synthesis) have been studied since the 1960’s but are still poorly understood, partly due to the fact that the reaction kinetics are very fast making experimental analysis of the reaction difficult. Shock synthesis is closely related to combustion synthesis, and occurs in the same systems that undergo exothermic gasless combustion reactions. The thermite reaction (Fe2O3 + 2Al -> 2Fe + Al2O3) is prototypical of this class of reactions. The effects of shock-wave passage through porous (powder) materials are complex, because intense and non-uniform plastic deformation is coupled with the shock-wave effects. Thus, the particle interiors experience primarily the effects of shock waves, while the surfaces undergo intense plastic deformation which can often result in interfacial melting. Shock synthesis of compounds from powders is triggered by the extraordinarily high energy deposition rate at the surfaces of the powders, forcing them in close contact, activating them by introducing defects, and heating them close to or even above their melting temperatures.


2006 ◽  
Vol 134 ◽  
pp. 1065-1070
Author(s):  
E. Lach ◽  
M. Scharf
Keyword(s):  

2015 ◽  
Vol 66 (3) ◽  
pp. 265-274 ◽  
Author(s):  
Y Cao ◽  
ÉM Neif ◽  
W Li ◽  
J Coppens ◽  
N Filiz ◽  
...  

CIM Journal ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
E. Kucukal ◽  
J. R. Kadambi ◽  
J. Furlan ◽  
R. Visintainer

2006 ◽  
Vol 16 (8) ◽  
pp. 981-996 ◽  
Author(s):  
Richard A. Jepsen ◽  
Sam S. Yoon ◽  
Byron Demosthenous

Sign in / Sign up

Export Citation Format

Share Document