Numerical study on wave-induced hydro-elastic responses of a floating raft for aquaculture

2021 ◽  
Vol 240 ◽  
pp. 109869
Author(s):  
Bei Chu ◽  
Yiren Chen ◽  
Yao Zhang ◽  
Guangming Zhang ◽  
Xu Xiang ◽  
...  
2021 ◽  
Vol 930 ◽  
Author(s):  
I.A. Milne ◽  
O. Kimmoun ◽  
J.M.R. Graham ◽  
B. Molin

The wave-induced resonant flow in a narrow gap between a stationary hull and a vertical wall is studied experimentally and numerically. Vortex shedding from the sharp bilge edge of the hull gives rise to a quadratically damped free surface response in the gap, where the damping coefficient is approximately independent of wave steepness and frequency. Particle image velocimetry and direct numerical simulations were used to characterise the shedding dynamics and explore the influence of discretisation in the measurements and computations. Secondary separation was identified as a particular feature which occurred at the hull bilge in these gap flows. This can result in the generation of a system with multiple vortical regions and asymmetries between the inflow and outflow. The shedding dynamics was found to exhibit a high degree of invariance to the amplitude in the gap and the spanwise position of the barge. The new measurements and the evaluation of numerical models of varying fidelity can assist in informing offshore operations such as the side by side offloading from floating liquefied natural gas facilities.


2018 ◽  
Vol 1 (4) ◽  
pp. 1-11 ◽  
Author(s):  
Mohammad Mohammad Beigi Kasvaei ◽  
◽  
Mohammad Hossein Kazeminezhad ◽  
Abbas Yeganeh-Bakhtiary ◽  
◽  
...  

2018 ◽  
Vol 157 ◽  
pp. 364-375 ◽  
Author(s):  
Chencong Liao ◽  
Dagui Tong ◽  
Dong-Sheng Jeng ◽  
Hongyi Zhao

2019 ◽  
Vol 1 (11) ◽  
Author(s):  
Richard Asumadu ◽  
Jisheng Zhang ◽  
H. Y. Zhao ◽  
Hubert Osei-Wusuansa ◽  
Alex Baffour Akoto

Author(s):  
Lu-Ning Cui ◽  
Yi Zheng ◽  
Yinggang Li ◽  
Ling Zhu ◽  
Mingsheng Chen

Abstract Ships sailing in the sea may encounter collision, grounding or projectile impacting accidents, which may cause hull damage and subsequent compartment flooding. Due to the effect of the flooding water induced moment and the restoring moment, the damaged ship may have inclination and rolling motion. When the inclination or the rolling motion is too large, it may affect the safety and survivability of ship in navigation and cause severe casualties and property losses. In order to increase the navigation safety and survivability of the damaged ship, a numerical model is established based on the potential flow theory to investigate the seakeeping performance of the damaged ship in two scenarios, i.e., the case before ship damaged, and the case when the damaged ship reaching a relatively stable floating state. The heave, pitch and roll motion responses and corresponding wave-induced loads acting on the ship are analyzed in regular waves. In addition, the effects of the navigation speed and the wave direction on the seakeeping performance are also investigated.


2013 ◽  
Vol 63 (11-12) ◽  
pp. 1151-1174 ◽  
Author(s):  
Chai Heng Lim ◽  
Karsten Lettmann ◽  
Jörg-Olaf Wolff

2018 ◽  
Vol 85 ◽  
pp. 921-925
Author(s):  
Titi Sui ◽  
Chi Zhang ◽  
Jinhai Zheng ◽  
Yakun Guo ◽  
Mingxiao Xie

2012 ◽  
Vol 1 (33) ◽  
pp. 41
Author(s):  
Kian Yew Lim ◽  
Ole Secher Madsen ◽  
Hin Fatt Cheong

An experimental study involving near-orthogonal wave-current interaction in a wave basin is reported in this paper. Due to previous shortcomings associated with 2D bottom configurations, i.e. occurrence of ripple-induced turning of flows close to the bed, the present experiments were conducted with the bottom covered by closely packed ceramic marbles (mean diameter of 1.25cm). Three types of flows were generated over this bottom: current-alone, wave-alone and combined wave-current flow. For current-alone and wave-current cases, the log-profile analysis was used to resolve the equivalent Nikuradse sand grain roughness, kn, while the energy dissipation method was used to estimate kn for wave-alone case. The results show that kn obtained for current- and wave-alone tests is roughly 2.2 times the diameter of the marbles. For orthogonal wave-current flows, the kn value, when used in combination with the Grant-Madsen (GM) model to reproduce the experimental apparent roughness, is found to be smaller than the measured current-alone and wave-alone kn. Similar under-prediction of bottom roughness is also observed when the GM model is compared with a numerical study, thus supporting the conjecture that when the current is weak compared to the waves, simple theoretical models like GM are not sufficiently sensitive to the angle of wave-current interaction. Experiments with currents at angles of 60° and 120° to the wave direction yield apparent roughness smaller than the 90° case, which is counter-intuitive since one would expect the mean flow to experience a stronger wave-induced turbulence when it is more aligned with the wave direction. This result indicates a possible contamination from wave-induced mass transport to the mean flow profile for non-orthogonal combined flow cases, and therefore highlights the need for other alternatives to the log-profile analysis when attempting to resolve kn from current velocity profiles from combined wave-current flows.


2019 ◽  
Vol 7 (9) ◽  
pp. 304
Author(s):  
Yuan ◽  
Liao ◽  
Zhou

Mat foundations are widely used in jack-up offshore platforms to support and transfer loads. Regarding mat foundations working on the seabed, the excess wave-induced pore pressure is critical to seabed stability, which may finally cause structural failure. Therefore, it is important to investigate the distribution of the excess pore pressure in the seabed around the mat foundation. In this study, experiments were performed to study the excess pore pressure distribution around a mat foundation in scale considering the true load state by recording wave profiles and pore pressures inside a sandy seabed. To guarantee the reliability of experiments, a numerical study was conducted and compared with the experimental results. Experimental results indicate that with the existence of the mat foundation, the excess pore pressure is higher at the region, the range of which is the width of the model mat (Wm) before the structure. The maximum pore pressure appears at 0.55 Wm in front of the center of the mat foundation. In addition, the current significantly increases the range of high pore pressure area and the amplitude of the excess pore pressure. As the mat orientation changes, the position of the maximum pore pressure changes from the front to the edge of the mat.


2020 ◽  
Vol 196 ◽  
pp. 106806
Author(s):  
Wei Zhang ◽  
Ould el Moctar ◽  
Thomas E. Schellin

Sign in / Sign up

Export Citation Format

Share Document