steady wave
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 4)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Vol 9 (12) ◽  
pp. 1459
Author(s):  
Qingze Gao ◽  
Lifei Song ◽  
Jianxi Yao

The wave-induced motions, and steady wave forces and moments for the oil tanker KVLCC2 in regular head and oblique waves are numerically predicted by using the expanded RANS solver based on OpenFOAM. New modules of wave boundary condition are programed into OpenFOAM for this purpose. In the present consideration, the steady wave forces and moments include not only the contribution of hydrodynamic effects but also the contribution of the inertial effects due to wave-induced ship motions. The computed results show that the contribution of the inertial effects due to heave and pitch in head waves is non-negligible when wave-induced motions are of large amplitude, for example, in long waves. The influence of wave amplitude on added resistance in head waves is also analyzed. The dimensionless added resistance becomes smaller with the increasing wave amplitude, indicating that added resistance is not proportional to the square of wave amplitude. However, wave amplitude seems not to affect the heave and pitch RAOs significantly. The steady wave surge force, sway force and yaw moment for the KVLCC2 with zero speed in oblique waves are computed as well. The present RANS results are compared with available experimental data, and very good agreements are found between them.


2020 ◽  
Vol 6 (49) ◽  
pp. eabd4850
Author(s):  
Michelle DiBenedetto ◽  
Zhipeng Qin ◽  
Jenny Suckale

Developing reliable, quantitative conduit models that capture the physical processes governing eruptions is hindered by our inability to observe conduit flow directly. The closest we get to direct evidence is testimony imprinted on individual crystals or bubbles in the conduit and preserved by quenching during the eruption. For example, small crystal aggregates in products of the 1959 eruption of Kīlauea Iki, Hawaii contain overgrown olivines separated by large, hydrodynamically unfavorable angles. The common occurrence of these aggregates calls for a flow mechanism that creates this crystal misorientation. Here, we show that the observed aggregates are the result of exposure to a steady wave field in the conduit through a customized, process-based model at the scale of individual crystals. We use this model to infer quantitative attributes of the flow at the time of aggregate formation; notably, the formation of misoriented aggregates is only reproduced in bidirectional, not unidirectional, conduit flow.


2020 ◽  
Vol 8 (2) ◽  
pp. 106
Author(s):  
Tianlong Mei ◽  
Maxim Candries ◽  
Evert Lataire ◽  
Zaojian Zou

In this paper, an improved potential flow model is proposed for the hydrodynamic analysis of ships advancing in waves. A desingularized Rankine panel method, which has been improved with the added effect of nonlinear steady wave-making (NSWM) flow in frequency domain, is employed for 3D diffraction and radiation problems. Non-uniform rational B-splines (NURBS) are used to describe the body and free surfaces. The NSWM potential is computed by linear superposition of the first-order and second-order steady wave-making potentials which are determined by solving the corresponding boundary value problems (BVPs). The so-called mj terms in the body boundary condition of the radiation problem are evaluated with nonlinear steady flow. The free surface boundary conditions in the diffraction and radiation problems are also derived by considering nonlinear steady flow. To verify the improved model and the numerical method adopted in the present study, the nonlinear wave-making problem of a submerged moving sphere is first studied, and the computed results are compared with the analytical results of linear steady flow. Subsequently, the diffraction and radiation problems of a submerged moving sphere and a modified Wigley hull are solved. The numerical results of the wave exciting forces, added masses, and damping coefficients are compared with those obtained by using Neumann–Kelvin (NK) flow and double-body (DB) flow. A comparison of the results indicates that the improved model using the NSWM flow can generally give results in better agreement with the test data and other published results than those by using NK and DB flows, especially for the hydrodynamic coefficients in relatively low frequency ranges.


2018 ◽  
Vol 845 ◽  
pp. 346-377 ◽  
Author(s):  
Matei I. Radulescu ◽  
Bijan Borzou

An exponential horn geometry is introduced in order to establish cellular detonations with a constant mean lateral mass divergence, propagating at quasi-steady speeds below the Chapman–Jouguet value. The experiments were conducted in $2\text{C}_{2}\text{H}_{2}+5\text{O}_{2}+21\text{Ar}$ and $\text{C}_{3}\text{H}_{8}+5\text{O}_{2}$. Numerical simulations were also performed for weakly unstable cellular detonations to test the validity of the exponential horn geometry. The experiments and simulations demonstrated that such quasi-steady state detonations can be realized, hence permitting us to obtain the relations between the detonation speed and mean lateral flow divergence for cellular detonations in an unambiguous manner. The experimentally obtained speed ($D$) dependencies on divergence ($K$) were compared with the predictions for steady detonations with lateral flow divergence obtained with the real thermo-chemical data of the mixtures. For the $2\text{C}_{2}\text{H}_{2}+5\text{O}_{2}+21\text{Ar}$ system, reasonable agreement was found between the experiments and steady wave prediction, particularly for the critical divergence leading to failure. Observations of the reaction zone structure in these detonations indicated that all the gas reacted very close to the front, as the transverse waves were reactive. The experiments obtained in the much more unstable detonations in $\text{C}_{3}\text{H}_{8}+5\text{O}_{2}$ showed significant differences between the experimentally derived $D(K)$ curve and the prediction of steady wave propagation. The latter was found to significantly under-predict the detonability of cellular detonations. The transverse waves in this mixture were found to be non-reactive, hence permitting the shedding of non-reacted pockets, which burn via turbulent flames on their surface. It is believed that the large differences between experiment and the inviscid model in this class of cellular structures is due to the importance of diffusive processes in the burn-out of the non-reacted pockets. The empirical tuning of a global one-step chemical model to describe the macro-scale kinetics in cellular detonations revealed that the effective activation energy was lower by 14 % in $2\text{C}_{2}\text{H}_{2}+5\text{O}_{2}+21\text{Ar}$ and 54 % in the more unstable $\text{C}_{3}\text{H}_{8}+5\text{O}_{2}$ system. This confirms previous observations that diffusive processes in highly unstable detonations are responsible for reducing the thermal ignition character of the gases processed by the detonation front.


2018 ◽  
Vol 154 ◽  
pp. 143-152 ◽  
Author(s):  
Limin Chen ◽  
Guanghua He ◽  
Atilla Incecik ◽  
Dazheng Wang

Author(s):  
Konstantinos Chatziioannou ◽  
Vanessa Katsardi ◽  
Apostolos Koukouselis ◽  
Euripidis Mistakidis

The purpose of this work is to highlight the importance of considering the actual nonlinear dynamic response for the analysis and design of fixed deep water platforms. The paper highlights the necessity of applying dynamic analysis through the comparison with the results obtained by the authors by applying static nonlinear analysis on the structure under examination. The example treated in the context of the present paper is a compliant tower, set-up in deep water. Nonlinearities are considered both for the calculation of the wave loadings and the structural analysis. The wave loading is based on linear random wave theory and comparisons are provided with the steady wave theories, Airy and Stokes 5th. The former solution is based on the most probable shape of a large linear wave on a given sea-state; the auto-correlation function of the underlying spectrum. On the other hand, in the field of structural analysis, two cases are considered for comparison, static analysis and time history dynamic analysis. For both types of analysis, two sub-cases are considered, a case in which geometric nonlinearity and nonlinearities related to the modelling of the soil are considered and a case in which the corresponding linear theories are employed (reference cases). The structural calculations were performed using the well-known structural analysis software SAP2000, which was enhanced by a special programming interface that was developed to calculate the wave loading and to directly apply the generated loads on the structural members. The results show that the consideration of the particle velocities associated with the linear random wave theory in the wave loading lead to significant differences with respect to the steady wave theories in terms of the displacements and stresses of the structure. Moreover, irrespectively of the adopted wave theory, the nonlinear analyses lead to significant discrepancies with respect to the linear ones. This is mainly associated with the nonlinear properties of the soil. Another source of discrepancies between the results of static and dynamic analyses stems from the change of the effective natural frequency of the structure when nonlinearities are considered.


Shock Waves ◽  
2016 ◽  
Vol 27 (2) ◽  
pp. 291-297 ◽  
Author(s):  
Yu. I. Meshcheryakov

2014 ◽  
Vol 226 (3) ◽  
pp. 917-930 ◽  
Author(s):  
D. A. Indeitsev ◽  
Yu. I. Meshcheryakov ◽  
A. Yu. Kuchmin ◽  
D. S. Vavilov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document