Numerical Study of Standing Wave-Induced Seabed Residual Response with the Non-homogeneous Soil Property

2018 ◽  
Vol 85 ◽  
pp. 921-925
Author(s):  
Titi Sui ◽  
Chi Zhang ◽  
Jinhai Zheng ◽  
Yakun Guo ◽  
Mingxiao Xie
2014 ◽  
Vol 1 (34) ◽  
pp. 36
Author(s):  
Jinhai Zheng ◽  
Titi Sui ◽  
Chi Zhang ◽  
Yakun Guo

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4360
Author(s):  
Umar Nawaz Bhatti ◽  
Salem Bashmal ◽  
Sikandar Khan ◽  
Rached Ben-Mansour

Thermoacoustic refrigerators have huge potential to replace conventional refrigeration systems as an alternative clean refrigeration technology. These devices utilize conversion of acoustic power and heat energy to generate the desired cooling. The stack plays a pivotal role in the performance of Standing Wave Thermoacoustic Refrigerators (SWTARs), as the heat transfer takes place across it. Performance of stacks can be significantly improved by making an arrangement of different materials inside the stack, resulting in anisotropic thermal properties along the length. In the present numerical study, the effect of multi-layered stack on the refrigeration performance of a SWTAR has been evaluated in terms of temperature drop across the stack, acoustic power consumed and device Coefficient of Performance (COP). Two different aspects of multi-layered stack, namely, different material combinations and different lengths of stacked layers, have been investigated. The combinations of four stack materials and length ratios have been investigated. The numerical results showed that multi-layered stacks produce lower refrigeration temperatures, consume less energy and have higher COP value than their homogeneous counterparts. Among all the material combinations of multi-layered stack investigated, stacks composed of a material layer with low thermal conductivity at the ends, i.e., RVC, produced the best performance with an increase of 26.14% in temperature drop value, reduction in the acoustic power consumption by 4.55% and COP enhancement of 5.12%. The results also showed that, for a constant overall length, an increase in length of side stacked material layer results in an increase in values of both temperature drop and COP.


2021 ◽  
Vol 930 ◽  
Author(s):  
I.A. Milne ◽  
O. Kimmoun ◽  
J.M.R. Graham ◽  
B. Molin

The wave-induced resonant flow in a narrow gap between a stationary hull and a vertical wall is studied experimentally and numerically. Vortex shedding from the sharp bilge edge of the hull gives rise to a quadratically damped free surface response in the gap, where the damping coefficient is approximately independent of wave steepness and frequency. Particle image velocimetry and direct numerical simulations were used to characterise the shedding dynamics and explore the influence of discretisation in the measurements and computations. Secondary separation was identified as a particular feature which occurred at the hull bilge in these gap flows. This can result in the generation of a system with multiple vortical regions and asymmetries between the inflow and outflow. The shedding dynamics was found to exhibit a high degree of invariance to the amplitude in the gap and the spanwise position of the barge. The new measurements and the evaluation of numerical models of varying fidelity can assist in informing offshore operations such as the side by side offloading from floating liquefied natural gas facilities.


1984 ◽  
pp. 309-315 ◽  
Author(s):  
N. W. Carlson ◽  
A. G. Yodh ◽  
T. W. Mossberg

2018 ◽  
Vol 1 (4) ◽  
pp. 1-11 ◽  
Author(s):  
Mohammad Mohammad Beigi Kasvaei ◽  
◽  
Mohammad Hossein Kazeminezhad ◽  
Abbas Yeganeh-Bakhtiary ◽  
◽  
...  

2004 ◽  
Vol 25 (2) ◽  
pp. 153-158
Author(s):  
Md. Anwar Hossain ◽  
Masaaki Kawahashi ◽  
Tomoyoshi Nagakita ◽  
Hiroyuki Hirahara

2018 ◽  
Vol 157 ◽  
pp. 364-375 ◽  
Author(s):  
Chencong Liao ◽  
Dagui Tong ◽  
Dong-Sheng Jeng ◽  
Hongyi Zhao

2021 ◽  
Vol 240 ◽  
pp. 109869
Author(s):  
Bei Chu ◽  
Yiren Chen ◽  
Yao Zhang ◽  
Guangming Zhang ◽  
Xu Xiang ◽  
...  

Author(s):  
Y. B. Yang ◽  
X. Q. Mo ◽  
K. Shi ◽  
Z. L. Wang ◽  
H. Xu ◽  
...  

Two factors are critical to the effectiveness of the vehicle scanning method for bridge frequencies. One is the frequency of the test vehicle itself. This can be eliminated by using the vehicle–bridge contact point response calculated from the vehicle response. The other is the surface roughness of the bridge, which can be removed by using the residual response of two connected vehicles. In this paper, it is demonstrated for the first time that both vehicle’s frequency and surface roughness can be simultaneously eliminated using the contact residue of two connected vehicles. Theoretically, a formulation is presented for both the contact response and residues. In the numerical study, the contact response is demonstrated to outperform the vehicle response as more bridge frequencies can be identified, while the contact residue is verified to work well for various surface roughnesses, vehicle spacings, and bridge damping ratios. For damped bridges with rough surfaces, the contact residue enables us to extract the first three bridge frequencies.


2019 ◽  
Vol 173 ◽  
pp. 157-173 ◽  
Author(s):  
Titi Sui ◽  
Chi Zhang ◽  
Dong-sheng Jeng ◽  
Yakun Guo ◽  
Jinhai Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document