current flows
Recently Published Documents


TOTAL DOCUMENTS

393
(FIVE YEARS 96)

H-INDEX

35
(FIVE YEARS 5)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 582
Author(s):  
Holger Behrends ◽  
Dietmar Millinger ◽  
Werner Weihs-Sedivy ◽  
Anže Javornik ◽  
Gerold Roolfs ◽  
...  

Faults and unintended conditions in grid-connected photovoltaic systems often cause a change of the residual current. This article describes a novel machine learning based approach to detecting anomalies in the residual current of a photovoltaic system. It can be used to detect faults or critical states at an early stage and extends conventional threshold-based detection methods. For this study, a power-hardware-in-the-loop approach was carried out, in which typical faults have been injected under ideal and realistic operating conditions. The investigation shows that faults in a photovoltaic converter system cause a unique behaviour of the residual current and fault patterns can be detected and identified by using pattern recognition and variational autoencoder machine learning algorithms. In this context, it was found that the residual current is not only affected by malfunctions of the system, but also by volatile external influences. One of the main challenges here is to separate the regular residual currents caused by the interferences from those caused by faults. Compared to conventional methods, which respond to absolute changes in residual current, the two machine learning models detect faults that do not affect the absolute value of the residual current.


Author(s):  
П.С. Парфенов ◽  
Н.В. Бухряков ◽  
Д.А. Онищук ◽  
А.А. Бабаев ◽  
А.В. Соколова ◽  
...  

The field-effect transistor method is used to study the mobility of charge carriers in layers of lead sulfide nanocrystals with ligands of tetrabutylammonium iodide and 1,2-ethanedithiol used to create solar cells. The difference between the operating of a transistor in ambient air and in an inert atmosphere is demonstrated. It is shown that, in the ambient air, the processes of charging nanocrystals are activated when current flows, and the influence of the polarization of the interface of nanocrystals and the insulator on the measurement of the mobility is analyzed. Different reactions of the layers with ligands to light have been demonstrated, showing a significant oxidation of the surface of nanocrystals treated with 1,2-ethanedithiol.


2021 ◽  
Vol 5 (1) ◽  
pp. 42-52
Author(s):  
Aulia Dyan Yohanlis ◽  
Mutiara Rachmat Putri

Manado Bay is a complex waterway located in Manado City, North Sulawesi, Indonesia. It is an entry point for the Indonesia Trough-Flow, and its circulation is affected by the seasonal winds. Manado City has no debris net on its river estuaries. Therefore, marine debris can easily be carried away by the ocean currents and accumulate in the tourism areas located along the coast of Manado Bay. Consequently, it is important to study the sea surface current circulation in Manado Bay to deal with marine debris accumulation. In the present study, we utilized the DELFT3D software to simulate the hydrodynamic circulation in Manado Bay from 2016-2017. We conducted a 2-dimension (2D) horizontal hydrodynamic simulation using tidal and wind forcing from European Centre for Medium-Range Weather (ECMWF). The simulation results indicate that the change in bathymetry and wind affect the sea surface currents. During the summer monsoon (June-August), the sea surface current flows from the northeast to the southwest with an average speed of 1.1 cm s-1. On the contrary, during the transitional monsoon 1 (September-November), the sea surface current flows from the southeast to the northwest with an average speed of 1.3 cm s-1. Meanwhile, in the winter monsoon (December-February), the sea surface current originated from the southwest flows to the east with an average velocity of 1.9 cm s-1. Then, it moves from west to east during transitional monsoon 2 (March-May) with an average speed of 1.5 cm s-1. The current speed increases whenthe water enters the strait between the Bunaken Islands due to refraction, diffraction, and shallowing effect. As current flows toward the shallower area, the current speed increases, compensating the water column reduction.


2021 ◽  
Vol 931 ◽  
Author(s):  
Xiao Yu ◽  
Johanna H. Rosman ◽  
James L. Hench

In the coastal ocean, interactions of waves and currents with large roughness elements, similar in size to wave orbital excursions, generate drag and dissipate energy. These boundary layer dynamics differ significantly from well-studied small-scale roughness. To address this problem, we derived spatially and phase-averaged momentum equations for combined wave–current flows over rough bottoms, including the canopy layer containing obstacles. These equations were decomposed into steady and oscillatory parts to investigate the effects of waves on currents, and currents on waves. We applied this framework to analyse large-eddy simulations of combined oscillatory and steady flows over hemisphere arrays (diameter $D$ ), in which current ( $U_c$ ), wave velocity ( $U_w$ ) and period ( $T$ ) were varied. In the steady momentum budget, waves increase drag on the current, and this is balanced by the total stress at the canopy top. Dispersive stresses from oscillatory flow around obstacles are increasingly important as $U_w/U_c$ increases. In the oscillatory momentum budget, acceleration in the canopy is balanced by pressure gradient, added-mass and form drag forces; stress gradients are small compared to other terms. Form drag is increasingly important as the Keulegan–Carpenter number $KC=U_wT/D$ and $U_c/U_w$ increase. Decomposing the drag term illustrates that a quadratic relationship predicts the observed dependences of steady and oscillatory drag on $U_c/U_w$ and $KC$ . For large roughness elements, bottom friction is well represented by a friction factor ( $f_w$ ) defined using combined wave and current velocities in the canopy layer, which is proportional to drag coefficient and frontal area per unit plan area, and increases with $KC$ and $U_c/U_w$ .


Actuators ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 294
Author(s):  
Dmitri Burdin ◽  
Dmitri Chashin ◽  
Leonid Fetisov ◽  
Dmitri Saveliev ◽  
Nikolai Ekonomov ◽  
...  

Magnetoelectric (ME) effects in composite ferromagnet-piezoelectric (FM/PE) heterostructures realize the mutual transformation of alternating magnetic and electric fields, and are used to create magnetic field sensors, actuators, inductors, gyrators, and transformers. The ME effect in composite structures is excited by an alternating magnetic field, which is created using volumetric electromagnetic coils. The coil increases the size, limits the operating frequencies, and complicates the manufacture of devices. In this work, we propose to excite the ME effect in composite heterostructures using a new coil-free excitation system, similar to a “magnetic capacitor”. The system consists of parallel electrodes integrated into the heterostructure, through which an alternating current flows. Modeling and measurements have shown that the excitation magnetic field is localized mainly between the electrodes of the magnetic capacitor and has a fairly uniform spatial distribution. Monolithic FM/PE heterostructures of various designs with FM layers of amorphous Metglas alloy or nickel-zinc ferrite and PE layers of lead zirconate titanate piezoceramic were fabricated and investigated. The magnitude of the ME effect in such structures is comparable to the magnitude of the ME effect in structures excited by volumetric coils. However, the low impedance of the coil-free excitation system makes it possible to increase the operating frequency, reducing the size of ME devices and the power consumption. The use of coil-free excitation opens up the possibility of creating planar ME devices, and accelerates their integration into modern electronics and microsystem technology.


2021 ◽  
Author(s):  
Francisco Javier Pérez-Invernón ◽  
Heidi Huntrieser ◽  
Patrick Jöckel ◽  
Francisco J. Gordillo-Vázquez

Abstract. Lightning flashes can produce a discharge in which a continuing electrical current flows for more than 40 ms. This type of flashes are proposed to be the main precursors of lightning-ignited wildfires and also to trigger sprite discharges in the mesosphere. However, lightning parameterizations implemented in global atmospheric models do not include information about the continuing electrical current of flashes. The continuing current of lightning flashes cannot be detected by conventional lightning location systems. Instead, these so-called Long-Continuing-Current (LCC) flashes are commonly observed by Extreme Low Frequency (ELF) sensors and by optical instruments located in space. Previous reports of LCC lightning flashes tend to occur in winter and oceanic thunderstorms, which suggests a connection between weak convection and the occurrence of this type of discharge. In this study, we develop a parameterization of LCC lightning flashes based on a climatology derived from optical lightning measurements reported by the Lightning Imaging Sensor (LIS) on-board the International Space Station (ISS) between March 2017 and March 2020. We use meteorological data from reanalyses to find a global parameterization that uses the vertical velocity at 450 hPa pressure level as a proxy for the ratio of LCC to typical lightning in thunderstorms. We implement this parameterization into the LNOX submodel of the Modular Earth Submodel System (MESSy) for usage within the EMAC model, and compare the observed and the simulated climatologies of LCC lightning flashes using six different lightning parameterizations. We find that the best agreement between the simulated and the observed spatial distribution is obtained when using a novel combined lightning parameterization based on the cloud top height over land and on the convective precipitation over ocean.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012001
Author(s):  
M Pustovetov

Abstract There is a problem of damage of bearings of traction induction motors of electric trains Lastochka by electric current. Based on the fact that the bearings have a ceramic insulation coating, and the cases of its electrical breakdown is not fixed, the authors put forward a version that a high-frequency current flows through the bearing as through an electric capacitance. The analysis show that the cause of the current can be a radio standard GSM-R. The proposed technical solution against the damage of bearings: the use of grounding shaft rings, replace the bearings on the other with ceramic rolling elements, arrangement of separate high-frequency grounding for the GSM-R antenna.


2021 ◽  
Vol 2087 (1) ◽  
pp. 012082
Author(s):  
Peng Wang ◽  
Jingwen Sun ◽  
Pipei Zhang ◽  
Jiangwei Wang ◽  
Zhonghua Zhao

Abstract The condensation on solid materials surface inside switchgear is an important reason threatening its safety and reliability. The formation of condensation is closely related to the temperature and humidity distribution inside the switchgear. A 3-D simplified finite element calculation model for the switchgear is established, including the bus bar, the wall bushing, the circuit breaker, the cables and other key components. Based on the electromagnetic-temperature-humidity multi-physical field coupling method, the temperature distribution inside the switchgear are calculated when the operating current flows through the bus-bar. Furthermore, the humidity diffusion process is also calculated when the relative humidity of external environment was 0.8, and the relative humidity inside the switchgear is obtained. The calculation results show that the surface humidity of the contact box of the circuit breaker is the highest whereas the temperature is the lowest, which is the location where the condensation is easy to occur.


2021 ◽  
Vol 2081 (1) ◽  
pp. 012033
Author(s):  
V N Timofeev

Abstract The article shows that a large flat platform with a constant current, which flows over its surface, accelerates time. It is also shown that if an alternating current flows along the surface of a flat platform while creating a null electromagnetic field then a force repelling from the platform acts on the test particle located near it. This force has no gravitational nature and arises as a result of the curvature of space-time by the electromagnetic field of a flat platform with an alternating current.


Sign in / Sign up

Export Citation Format

Share Document