An experimental and numerical study of the resonant flow between a hull and a wall

2021 ◽  
Vol 930 ◽  
Author(s):  
I.A. Milne ◽  
O. Kimmoun ◽  
J.M.R. Graham ◽  
B. Molin

The wave-induced resonant flow in a narrow gap between a stationary hull and a vertical wall is studied experimentally and numerically. Vortex shedding from the sharp bilge edge of the hull gives rise to a quadratically damped free surface response in the gap, where the damping coefficient is approximately independent of wave steepness and frequency. Particle image velocimetry and direct numerical simulations were used to characterise the shedding dynamics and explore the influence of discretisation in the measurements and computations. Secondary separation was identified as a particular feature which occurred at the hull bilge in these gap flows. This can result in the generation of a system with multiple vortical regions and asymmetries between the inflow and outflow. The shedding dynamics was found to exhibit a high degree of invariance to the amplitude in the gap and the spanwise position of the barge. The new measurements and the evaluation of numerical models of varying fidelity can assist in informing offshore operations such as the side by side offloading from floating liquefied natural gas facilities.

2003 ◽  
Author(s):  
C. Ghenai ◽  
R. K. Duggirala ◽  
C. X. Lin ◽  
M. A. Ebadian

This experimental study focused mainly on the solidification of a binary mixture of ammonium chloride and water (NH4Cl-H2O) in a differentially heated cavity. One vertical wall is cooled at temperature TC, and the opposite vertical wall is kept at constant temperature TH = +20°C. The effect on the solidification process of the initial concentration of ammonium chloride and cooling conditions is examined. Particle image velocimetry (PIV) is used for the visualization of the dynamic field during the solidification process. The temperature distribution at discrete locations in the solution and on the vertical cooling wall was monitored using thermocouples. The convection flow patterns, the ice thickness, and the temperature distribution were obtained for various initial concentrations of ammonium chloride ranging from 0wt% to 20wt% (sub-eutectic and near-eutectic growth). The convection patterns obtained for different initial concentrations showed significant differences. The results showed that the process of solidification is slower with an increase in the initial concentration levels of the binary solution. The ice growth rate was almost double at the bottom of the cavity.


Author(s):  
Jean-Pierre Rabbah ◽  
Neelakantan Saikrishnan ◽  
Ajit P. Yoganathan

Patient specific mitral valve computational models are being actively developed to facilitate surgical planning. These numerical models increasingly employ more realistic geometries, kinematics, and mechanical properties, which in turn requires rigorous experimental validation [1]. However, to date, native mitral flow dynamics have not been accurately and comprehensively characterized. In this study, we used Stereoscopic Particle Image Velocimetry (SPIV) to characterize the ventricular flow field proximal to a native mitral valve in a pulsatile experimental flow loop.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 143
Author(s):  
Yorgos G. Stergiou ◽  
Aggelos T. Keramydas ◽  
Antonios D. Anastasiou ◽  
Aikaterini A. Mouza ◽  
Spiros V. Paras

The study of hemodynamics is particularly important in medicine and biomedical engineering as it is crucial for the design of new implantable devices and for understanding the mechanism of various diseases related to blood flow. In this study, we experimentally identify the cell free layer (CFL) width, which is the result of the Fahraeus–Lindqvist effect, as well as the axial velocity distribution of blood flow in microvessels. The CFL extent was determined using microscopic photography, while the blood velocity was measured by micro-particle image velocimetry (μ-PIV). Based on the experimental results, we formulated a correlation for the prediction of the CFL width in small caliber (D < 300 μm) vessels as a function of a modified Reynolds number (Re∞) and the hematocrit (Hct). This correlation along with the lateral distribution of blood viscosity were used as input to a “two-regions” computational model. The reliability of the code was checked by comparing the experimentally obtained axial velocity profiles with those calculated by the computational fluid dynamics (CFD) simulations. We propose a methodology for calculating the friction loses during blood flow in μ-vessels, where the Fahraeus–Lindqvist effect plays a prominent role, and show that the pressure drop may be overestimated by 80% to 150% if the CFL is neglected.


2010 ◽  
Vol 662 ◽  
pp. 260-268 ◽  
Author(s):  
A. SAURET ◽  
D. CÉBRON ◽  
C. MORIZE ◽  
M. LE BARS

We study both experimentally and numerically the steady zonal flow generated by longitudinal librations of a spherical rotating container. This study follows the recent weakly nonlinear analysis of Busse (J. Fluid Mech., vol. 650, 2010, pp. 505–512), developed in the limit of small libration frequency–rotation rate ratio and large libration frequency–spin-up time product. Using particle image velocimetry measurements as well as results from axisymmetric numerical simulations, we confirm quantitatively the main features of Busse's analytical solution: the zonal flow takes the form of a retrograde solid-body rotation in the fluid interior, which does not depend on the libration frequency nor on the Ekman number, and which varies as the square of the amplitude of excitation. We also report the presence of an unpredicted prograde flow at the equator near the outer wall.


Author(s):  
Doyoung Byun ◽  
Jihoon Kim ◽  
Jongin Hong

We investigate the slippage effect in a super-hydrophobic micro-channel. The micro-scale grooves are fabricated on the vertical wall to make the super-hydrophobic surfaces, which enable us visualize the flow fields near walls and directly measure the slip length. Velocity profiles are measured using micro-particle image velocimetry (PIV). The velocity profile near the wall shows larger slip length and, if the groove structure is high and wide, the liquid meniscus forms curves into the valley so that the wavy flow is created after the grooves. Also depending on the ratio of pitch to width of the groove structure, the water meniscus status can be either sustained between the valleys or collapsed to be wet. This Cassie to Wenzel transition is observed in the micro-channel. And we investigate the effects of grooves shape and the flow rate on the wetting transition.


Author(s):  
Tufan Arslan ◽  
Stefano Malavasi ◽  
Bjørnar Pettersen ◽  
Helge I. Andersson

The present work is motivated by phenomena occurring in the flow field around structures partly submerged in water. A three dimensional unsteady flow around a rectangular cylinder is studied for four different submergence ratios by using computational fluid dynamics (CFD) tools with LES turbulence model. Simulation results are compared to particle image velocimetry (PIV) measurements at Reynolds number Re = 12100 and Froude number Fr = 0.26. Focus in our investigation is on the characterization of the behaviour of vortex structures generated by separated flow. Another target in the study is to obtain better knowledge of the hydrodynamic forces acting on a semi-submerged structure. Computed force coefficients are compared with experimental measurements.


2008 ◽  
Vol 598 ◽  
pp. 383-392 ◽  
Author(s):  
YONG SUNG PARK ◽  
PHILIP L.-F. LIU ◽  
STEPHEN J. CLARK

Liu & Chan (J. Fluid Mech. vol. 579, 2007, p. 467, hereinafter referred to as LC) derived analytical solutions for the interactions between shallow water waves and a viscous fluid seabed. In this paper we present a set of new experimental data on the solitary-wave-induced flows in a viscous muddy seabed so as to validate LC's theory and the approximations employed. In the experiments a clear silicone fluid was used as the viscous mud and particle image velocimetry was employed to measure the velocity field inside the viscous mud. The shear stress along the bottom of the mud bed and the displacement of the water--mud interface were also deduced from data. Experimental results showed excellent agreement with the theoretical solutions. Additional analyses were performed to show that the ratio of the muddy seabed thickness to the corresponding bottom boundary-layer thickness, $\dbar$, plays an important role in characterizing mud flow regimes. When $\dbar\,{\leq}\,1$, the vertical profile of the horizontal velocity in the mud bed can be parameterized as a parabola. On the other hand, when $\dbar\,{\gg}\,1$, the velocity profile appears as a plug flow above a thin viscous layer. When $ \dbar\,{\sim}\,O(1)$, the flow patterns are more complex than the other two regimes and flow reversal can occur inside the viscous mud bed.


Author(s):  
Hervé Bonnard ◽  
Ludovic Chatellier ◽  
Laurent David

An experimental study of vortex shedding on a hydrofoil Eppler 817 was conducted using two-dimensional two components Particle Image Velocimetry. This foil section’s characteristics are adapted for naval applications but sparsely documented. The characterization of the flow modes was realized based on statistical data such as the mean velocity field and the standard deviation of the vertical velocities. The data were acquired at very low Reynolds number which are not often covered for such hydrofoil and at four angles of attack ranging from 2◦ to 30◦. A map of different characteristic flow modes was made for this space of parameters and was used to identify flow configurations exhibiting particular dynamics.


2019 ◽  
Vol 85 ◽  
pp. 02016 ◽  
Author(s):  
Laurenţiu Tăcutu ◽  
Ilinca Năstase ◽  
Florin Bode ◽  
Cristiana Verona Croitoru ◽  
Angel Dogeanu ◽  
...  

This paper presents a study for two thermal plumes generated by two humanoid thermal manikins, one standing and one lying down. The research was approached from a numerical and experimental perspective. The numerical model represents an operating room (OR) with two surgeons, a patient and a unidirectional air flow (UAF) diffuser. The experimental study was made in a climatic chamber, having a similar air distribution system, using particle image velocimetry (PIV) and infrared thermography (IR) measurements. The purpose of the study was to characterize the thermal plumes of the two manikins by numerical and experimental studies. The results obtained from these different approaches were compared with each other and with the ones from the literature in order to validate our numerical models.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Taravat Khadivi ◽  
Eric Savory

The flow regimes associated with 2:1 aspect ratio elliptical planform cavities of varying depth immersed in a turbulent boundary layer at a Reynolds number of 8.7 × 104, based on the minor axis of the cavity, have been quantified from particle image velocimetry measurements and three-dimensional steady computational fluid dynamics simulations (Reynolds stress model closure). Although these elliptical cavity flows have some similarities with nominally two-dimensional and rectangular cases, three-dimensional effects due to the low aspect ratio and curvature of the walls give rise to features exclusive to low aspect ratio elliptical cavities, including formation of cellular structures at intermediate depths and vortex structures within and downstream of the cavity.


Sign in / Sign up

Export Citation Format

Share Document