Spatio-temporal evolutionary characteristics and type classification of marine economy resilience in China

2022 ◽  
Vol 217 ◽  
pp. 106016
Author(s):  
Jinghui Wu ◽  
Bo Li
2011 ◽  
Vol 38 (9) ◽  
pp. 866-871 ◽  
Author(s):  
Zhi-Hua HUANG ◽  
Ming-Hong LI ◽  
Yuan-Ye MA ◽  
Chang-Le ZHOU

2021 ◽  
Vol 10 (3) ◽  
pp. 188
Author(s):  
Cyril Carré ◽  
Younes Hamdani

Over the last decade, innovative computer technologies and the multiplication of geospatial data acquisition solutions have transformed the geographic information systems (GIS) landscape and opened up new opportunities to close the gap between GIS and the dynamics of geographic phenomena. There is a demand to further develop spatio-temporal conceptual models to comprehensively represent the nature of the evolution of geographic objects. The latter involves a set of considerations like those related to managing changes and object identities, modeling possible causal relations, and integrating multiple interpretations. While conventional literature generally presents these concepts separately and rarely approaches them from a holistic perspective, they are in fact interrelated. Therefore, we believe that the semantics of modeling would be improved by considering these concepts jointly. In this work, we propose to represent these interrelationships in the form of a hierarchical pyramidal framework and to further explore this set of concepts. The objective of this framework is to provide a guideline to orient the design of future generations of GIS data models, enabling them to achieve a better representation of available spatio-temporal data. In addition, this framework aims at providing keys for a new interpretation and classification of spatio-temporal conceptual models. This work can be beneficial for researchers, students, and developers interested in advanced spatio-temporal modeling.


2013 ◽  
Vol 51 (6) ◽  
pp. 3328-3335 ◽  
Author(s):  
Scott Havens ◽  
Hans-Peter Marshall ◽  
Christine Pielmeier ◽  
Kelly Elder

2019 ◽  
Author(s):  
Marion Poupard ◽  
Paul Best ◽  
Jan Schlüter ◽  
Helena Symonds ◽  
Paul Spong ◽  
...  

Killer whales (Orcinus orca) can produce 3 types of signals: clicks, whistles and vocalizations. This study focuses on Orca vocalizations from northern Vancouver Island (Hanson Island) where the NGO Orcalab developed a multi-hydrophone recording station to study Orcas. The acoustic station is composed of 5 hydrophones and extends over 50 km 2 of ocean. Since 2015 we are continuously streaming the hydrophone signals to our laboratory in Toulon, France, yielding nearly 50 TB of synchronous multichannel recordings. In previous work, we trained a Convolutional Neural Network (CNN) to detect Orca vocalizations, using transfer learning from a bird activity dataset. Here, for each detected vocalization, we estimate the pitch contour (fundamental frequency). Finally, we cluster vocalizations by features describing the pitch contour. While preliminary, our results demonstrate a possible route towards automatic Orca call type classification. Furthermore, they can be linked to the presence of particular Orca pods in the area according to the classification of their call types. A large-scale call type classification would allow new insights on phonotactics and ethoacoustics of endangered Orca populations in the face of increasing anthropic pressure.


2021 ◽  
Vol 62 ◽  
pp. 9-15
Author(s):  
Marta Karaliutė ◽  
Kęstutis Dučinskas

In this article we focus on the problem of supervised classifying of the spatio-temporal Gaussian random field observation into one of two classes, specified by different mean parameters. The main distinctive feature of the proposed approach is allowing the class label to depend on spatial location as well as on time moment. It is assumed that the spatio-temporal covariance structure factors into a purely spatial component and a purely temporal component following AR(p) model. In numerical illustrations with simulated data, the influence of the values of spatial and temporal covariance parameters to the derived error rates for several prior probabilities models are studied.


Sign in / Sign up

Export Citation Format

Share Document