scholarly journals In vivo high-throughput screening of novel adeno-associated viral capsids identifies variants for transduction of adult neural stem cells within the subventricular zone

Author(s):  
Lukas PM. Kremer ◽  
Santiago Cerrizuela ◽  
Sascha Dehler ◽  
Thomas Stiehl ◽  
Jonas Weinmann ◽  
...  
2011 ◽  
Vol 8 (1) ◽  
pp. 119
Author(s):  
Ruth Beckervordersandforth ◽  
Pratibha Tripathi ◽  
Jovica Ninkovic ◽  
Efil Bayam ◽  
Alexandra Lepier ◽  
...  

2016 ◽  
Vol 21 (10) ◽  
pp. 1112-1124 ◽  
Author(s):  
Sheng Dai ◽  
Rong Li ◽  
Yan Long ◽  
Steve Titus ◽  
Jinghua Zhao ◽  
...  

Human neuronal cells differentiated from induced pluripotent cells have emerged as a new model system for the study of disease pathophysiology and evaluation of drug efficacy. Differentiated neuronal cells are more similar in genetics and biological content to human brain cells than other animal disease models. However, culture of neuronal cells in assay plates requires a labor-intensive procedure of plate precoating, hampering its applications in high-throughput screening (HTS). We developed a simplified method with one-step seeding of neural stem cells in assay plates by supplementing the medium with a recombinant human vitronectin (VTN), thus avoiding plate precoating. Robust results were obtained from cell viability, calcium response, and neurite outgrowth assays using this new method. Our data demonstrate that this approach greatly simplifies high-throughput assays using neuronal cells differentiated from human stem cells for translational research.


2009 ◽  
Vol 65 ◽  
pp. S101-S102
Author(s):  
Tetsuji Mori ◽  
Taketoshi Wakabayashi ◽  
Yasuharu Takamori ◽  
Kotaro Kitaya ◽  
Hisao Yamada

2016 ◽  
Vol 11 (8) ◽  
pp. 1360-1370 ◽  
Author(s):  
Joana S Barbosa ◽  
Rossella Di Giaimo ◽  
Magdalena Götz ◽  
Jovica Ninkovic

2020 ◽  
Author(s):  
Katja Baur ◽  
Yomn Abdullah ◽  
Claudia Mandl ◽  
Gabriele Hölzl-Wenig ◽  
Yan Shi ◽  
...  

ABSTRACTNeural stem cells (NSCs) in the ventricular-subventricular zone (V-SVZ) contribute to olfaction by being the origin of most adult-born olfactory bulb (OB) interneurons. The current consensus maintains that adult NSCs are radial glialike progenitors apically contacting the lateral ventricle and generating intermediate progenitors migrating at the basal V-SVZ. Whether basal NSCs are present in the V-SVZ is unknown. We here used genetic tagging of NSCs in vivo and additional labelling approaches to reveal that basal NSCs lacking apical attachment represent the largest NSC type in the postnatal V-SVZ from birth onwards. Despite dividing faster than their apical counterpart, basal NSCs still undergo long-term self-renewal and quiescence. Unlike apical NSCs, they are largely devoid of primary cilia and Prominin-1, Nestin and glial fibrillary acidic protein (GFAP) immunoreactivity. Six weeks after viral tagging of apical cells, few descendant cells were detected in the basal V-SVZ, including Sox9+ progenitors and GFAP+ astrocytes, and very rare new neurons in the OB, indicating that adult-born OB neurons originate from basal and not apical NSCs. Consistent with this, we found that pregnancy, a physiological modulator of adult OB neurogenesis, selectively increases the number of basal but not apical NSCs. Lastly, we find that apical NSCs display the highest levels of Notch activation in the neural lineage, and that selective apical downregulation of Notch-signaling effector Hes1 decreases Notch activation while increasing proliferation across the V-SVZ. Thus, apical NSCs act essentially as neurogenesis gatekeepers by modulating Notch-mediated lateral inhibition of proliferation in the adult V-SVZ.Graphical AbstractHighlightsBasal NSCs are the most abundant stem cell type in the adult V-SVZ from birth onwards.Apical and basal NSCs display distinct characteristics and cell cycle progression dynamics.Apical NSCs are not the main source of newly generated adult OB interneurons.Apical NSCs regulate intermediate progenitor proliferation by orchestrating Notch-mediated lateral inhibition.


2019 ◽  
Vol 29 (5) ◽  
pp. 727-735 ◽  
Author(s):  
Yuhang Cao ◽  
Yingliang Zhuang ◽  
Junchen Chen ◽  
Weize Xu ◽  
Yikai Shou ◽  
...  

Abstract N 6-methyladenosine (m6A) modification of RNA is deposited by the methyltransferase complex consisting of Mettl3 and Mettl14 and erased by demethylase Fto and Alkbh5 and is involved in diverse biological processes. However, it remains largely unknown the specific function and mechanism of Fto in regulating adult neural stem cells (aNSCs). In the present study, utilizing a conditional knockout (cKO) mouse model, we show that the specific ablation of Fto in aNSCs transiently increases the proliferation of aNSCs and promotes neuronal differentiation both in vitro and in vivo, but in a long term, the specific ablation of Fto inhibits adult neurogenesis and neuronal development. Mechanistically, Fto deficiency results in a significant increase in m6A modification in Pdgfra and Socs5. The increased expression of Pdgfra and decreased expression of Socs5 synergistically promote the phosphorylation of Stat3. The modulation of Pdgfra and Socs5 can rescue the neurogenic deficits induced by Fto depletion. Our results together reveal an important function of Fto in regulating aNSCs through modulating Pdgfra/Socs5-Stat3 pathway.


Sign in / Sign up

Export Citation Format

Share Document