Asymmetric and dynamic waveguide propagation based on localized parity-time symmetry

2019 ◽  
Vol 443 ◽  
pp. 129-135
Author(s):  
Xiao-xue Li ◽  
Si-fang Ye ◽  
Li-xia Yang ◽  
Yun-tuan Fang
1989 ◽  
Vol 136 (2) ◽  
pp. 97 ◽  
Author(s):  
T.M. Benson ◽  
P.C. Kendall ◽  
M.S. Stern ◽  
D.A. Quinney

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Arik Bergman ◽  
Robert Duggan ◽  
Kavita Sharma ◽  
Moshe Tur ◽  
Avi Zadok ◽  
...  

AbstractThe exotic physics emerging in non-Hermitian systems with balanced distributions of gain and loss has recently drawn a great deal of attention. These systems exhibit phase transitions and exceptional point singularities in their spectra, at which eigen-values and eigen-modes coalesce and the overall dimensionality is reduced. So far, these principles have been implemented at the expense of precise fabrication and tuning requirements, involving tailored nano-structured devices with controlled optical gain and loss. In this work, anti-parity-time symmetric phase transitions and exceptional point singularities are demonstrated in a single strand of single-mode telecommunication fibre, using a setup consisting of off-the-shelf components. Two propagating signals are amplified and coupled through stimulated Brillouin scattering, enabling exquisite control over the interaction-governing non-Hermitian parameters. Singular response to small-scale variations and topological features arising around the exceptional point are experimentally demonstrated with large precision, enabling robustly enhanced response to changes in Brillouin frequency shift.


2020 ◽  
Author(s):  
Edgar Daniel Rodriguez Velasquez ◽  
Olga Kosheleva ◽  
Vladik Kreinovich
Keyword(s):  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Tao Chen ◽  
Wei Gou ◽  
Dizhou Xie ◽  
Teng Xiao ◽  
Wei Yi ◽  
...  

AbstractWe experimentally study quantum Zeno effects in a parity-time (PT) symmetric cold atom gas periodically coupled to a reservoir. Based on the state-of-the-art control of inter-site couplings of atoms in a momentum lattice, we implement a synthetic two-level system with passive PT symmetry over two lattice sites, where an effective dissipation is introduced through repeated couplings to the rest of the lattice. Quantum Zeno (anti-Zeno) effects manifest in our experiment as the overall dissipation of the two-level system becoming suppressed (enhanced) with increasing coupling intensity or frequency. We demonstrate that quantum Zeno regimes exist in the broken PT symmetry phase, and are bounded by exceptional points separating the PT symmetric and PT broken phases, as well as by a discrete set of critical coupling frequencies. Our experiment establishes the connection between PT-symmetry-breaking transitions and quantum Zeno effects, and is extendable to higher dimensions or to interacting regimes, thanks to the flexible control with atoms in a momentum lattice.


1985 ◽  
Vol 15 (11) ◽  
pp. 1515-1523 ◽  
Author(s):  
A G Borkin ◽  
S V Drobyazko ◽  
E B Levchenko ◽  
Yu M Senatorov ◽  
V V Turygin

2012 ◽  
Vol 16 (11) ◽  
pp. 4435-4446 ◽  
Author(s):  
L. Cheng ◽  
M. Yaeger ◽  
A. Viglione ◽  
E. Coopersmith ◽  
S. Ye ◽  
...  

Abstract. The flow duration curve (FDC) is a classical method used to graphically represent the relationship between the frequency and magnitude of streamflow. In this sense it represents a compact signature of temporal runoff variability that can also be used to diagnose catchment rainfall-runoff responses, including similarity and differences between catchments. This paper is aimed at extracting regional patterns of the FDCs from observed daily flow data and elucidating the physical controls underlying these patterns, as a way to aid towards their regionalization and predictions in ungauged basins. The FDCs of total runoff (TFDC) using multi-decadal streamflow records for 197 catchments across the continental United States are separated into the FDCs of two runoff components, i.e., fast flow (FFDC) and slow flow (SFDC). In order to compactly display these regional patterns, the 3-parameter mixed gamma distribution is employed to characterize the shapes of the normalized FDCs (i.e., TFDC, FFDC and SFDC) over the entire data record. This is repeated to also characterize the between-year variability of "annual" FDCs for 8 representative catchments chosen across a climate gradient. Results show that the mixed gamma distribution can adequately capture the shapes of the FDCs and their variation between catchments and also between years. Comparison between the between-catchment and between-year variability of the FDCs revealed significant space-time symmetry. Possible relationships between the parameters of the fitted mixed gamma distribution and catchment climatic and physiographic characteristics are explored in order to decipher and point to the underlying physical controls. The baseflow index (a surrogate for the collective impact of geology, soils, topography and vegetation, as well as climate) is found to be the dominant control on the shapes of the normalized TFDC and SFDC, whereas the product of maximum daily precipitation and the fraction of non-rainy days was found to control the shape of the FFDC. These relationships, arising from the separation of total runoff into its two components, provide a potential physical basis for regionalization of FDCs, as well as providing a conceptual framework for developing deeper process-based understanding of the FDCs.


Sign in / Sign up

Export Citation Format

Share Document