Measurement of mesopause temperature using the mesospheric airglow spectrum photometer (MASP)

2020 ◽  
Vol 464 ◽  
pp. 125546
Author(s):  
Haiyang Gao ◽  
Licheng Li ◽  
Lingbing Bu ◽  
Qilin Zhang ◽  
Zhen Wang ◽  
...  
1979 ◽  
Vol 84 (A7) ◽  
pp. 3403 ◽  
Author(s):  
Purobi Chakrabarty ◽  
D.K. Chakrabarty

2020 ◽  
Author(s):  
Konstantin Ratovsky ◽  
Irina Medvedeva ◽  
Anna Yasyukevich ◽  
Boris Shpynev ◽  
Denis Khabituev

<p>We study the correlation between wave activities in different layers of the atmosphere. The variability of the measured characteristic in the range of internal gravity wave periods is used as a proxy of wave activity. In the case of ground-based measurements, we consider temporal variations with periods less than ~ 6 hours; while in the case of satellite measurements we take into account spatial variations with periods less than ~ 1000 km. The wave activity is calculated as the standard deviation of variations in the indicated period range with averaging over one day. The aim of the study is to detect a correlation between day-to-day variations of wave activity in different layers of the atmosphere. Correlation coefficients are calculated for various intervals from one month to one year. Correlation analysis reveals the potential relationship between wave phenomena in the stratosphere, mesosphere and ionosphere. The study uses the following characteristics. The ionospheric characteristics are the peak electron density from the Irkutsk ionosonde (52.3 N, 104.3 E) and the total electron content from the Irkutsk GPS receiver. The characteristic of the mesosphere is the mesopause temperature from spectrometric measurements of the OH emission (834.0 nm, band (6-2)) near Irkutsk (51.8 N, 103.1 E, Tory). The stratospheric characteristic is the vertical gas velocity at 1 hPa from the ERA-Interim reanalysis (apps.ecmwf.int/datasets/data/).</p><p>This study was supported by the Grant of the Russian Science Foundation (Project N 18-17-00042). The observational results were obtained using the equipment of Center for Common Use «Angara» http: //ckp-rf.ru/ckp/3056/ within budgetary funding of Basic Research program II.12.</p>


2020 ◽  
Author(s):  
Takanori Nishiyama ◽  
Makoto Taguchi ◽  
Hidehiko Suzuki ◽  
Peter Dalin ◽  
Yasunobu Ogawa ◽  
...  

Abstract We have carried out ground-based NIRAS (Near-InfraRed Aurora and airglow Spectrograph) observations at Syowa station, Antarctic (69.0°S, 39.6°E) and Kiruna (67.8°N, 20.4°E), Sweden for continuous measurements of hydroxyl (OH) rotational temperatures and a precise evaluation of aurora contaminations to OH Meinel (3,1) band. A total of 368-nights observations succeeded for two winter seasons, and three cases in which N+2 Meinel (1,2) band around 1.5 μm was significant were identified. Focusing on two specific cases, detailed spectral characteristics with high temporal resolutions of 30 seconds are presented. Intensities of N+2 band were estimated to be 228 kR and 217 kR just at the moment of the aurora breakup and arc intensifications during pseudo breakup, respectively. At a wavelength of P1(2) line (∼ 1523 nm), N+2 emissions were almost equal to or greater than the OH line intensity. On the other hand, at a wavelength of P1(4) line (∼ 1542 nm), the OH line was not seriously contaminated and still dominant to N+2 emissions. Furthermore, we evaluated N+2 (1,2) band effects on OH rotational temperature estimations quantitatively for the first time. Aurora contaminations from N+2 (1,2) band basically lead negative bias in OH rotational temperature estimated by line-pair-ratio method with P1(2) and P1(4) lines in OH (3,1) band. They possibly cause underestimations of OH rotational temperatures up to 40 K. In addition, N+2 (1,2) band contaminations were temporally limited to a moment around aurora breakup. This is consistent with proceeding studies reporting that enhancements of N+2 (1,2) band were observed associated with International Brightness Coefficient 2-3 auroras. It is also suggested that the contaminations would be neglected in polar cap and sub-aurora zone, where strong aurora intensifications are less observed. Further spectroscopic investigations at this wavelength are needed especially for more precise evaluations of to N+2 (1,2) band contaminations. For example, simultaneous 2-D imaging observation and spectroscopic measurement with high spectral resolutions for airglow in OH (3,1) band will make great advances in more robust temperature estimations.


2017 ◽  
Vol 20 ◽  
pp. 01005
Author(s):  
Alexey Korsakov ◽  
Vladimir Kozlov ◽  
Anastasia Ammosova ◽  
Petr Ammosov ◽  
Galina Gavrilyeva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document