Fourier interferometry of multi-layer sample using wavelength tuning and partially negative window

2021 ◽  
Vol 137 ◽  
pp. 106350
Author(s):  
Yangjin Kim ◽  
Wonjun Bae ◽  
Young Hoon Moon ◽  
Kenichi Hibino ◽  
Mamoru Mitsuishi
1995 ◽  
Vol 31 (21) ◽  
pp. 1843-1845 ◽  
Author(s):  
K. Kudo ◽  
M. Kitamura ◽  
M. Yamaguchi ◽  
N. Kida ◽  
P. Delansay
Keyword(s):  

1982 ◽  
Vol 18 (2) ◽  
pp. 199-204 ◽  
Author(s):  
G. Clark ◽  
L. Heflinger ◽  
C. Roychoudhuri

2003 ◽  
Vol 796 ◽  
Author(s):  
Chunhai Ji ◽  
Wayne A. Anderson

ABSTRACTIn the metal-induced growth (MIG) process, the poly-Si layer hetero-epitaxially grows from a thin silicide layer, formed by reaction of a metal seed-layer and sputtered silicon, due to an extremely close lattice match between silicon and the metal silicide. The produced poly-Si has shown a promising device quality for photovoltaic applications. Recent results show that the interface of the silicide and poly-Si has a significant effect on the properties of the poly-Si which works as an active layer for photon absorption. In the study of the MIG process, two metals were used as a seed-layer, i.e. Ni and Co. Although CoSi2has a larger lattice mismatch with Si (1.2%) than does NiSi2(0.4%), the poly-Si growing from Co has a smoother interface between the poly-Si and silicide, while the one for the Ni seed-layer samples is rather rough. Backscattered XSEM shows that the Ni-contained phase extended into the Si layer by forming long spikes. This might cause crystal defects in the Si layer. The Auger depth profile also showed that the Ni atoms diffuse into the Si layer much more than does the Co. This kind of difference in interface structure causes the different properties of the poly-Si layer. X-ray diffraction (XRD) analysis on the Si layer showed that the Co seed-layer sample had a predominant growth orientation of (220) and the FWHM of 0.2°. The Ni seed-layer samples grew mainly in both <111> and <220> direction, with FWHM of 0.3° and 0.4°, respectively. By comparison, the poly-Si from the Co seed-layer had a higher carrier lifetime of 0.458μs compared to 0.305μs from Ni.


1994 ◽  
Vol 30 (4) ◽  
pp. 311-312 ◽  
Author(s):  
J. Langanay ◽  
E. Gaumont-Goarin ◽  
C. Starck ◽  
J.Y. Emery ◽  
O. Le Gouézigou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document