Microstructure and mechanical properties of heat affected zone of laser-MAG hybrid welded low carbon bainitic steel joints

2022 ◽  
Vol 148 ◽  
pp. 107729
Author(s):  
Jia Xie ◽  
Chuang Cai ◽  
Ying Liang ◽  
Zhijie Liu ◽  
Yaorui Ma
2018 ◽  
Vol 941 ◽  
pp. 329-333 ◽  
Author(s):  
Jiang Ying Meng ◽  
Lei Jie Zhao ◽  
Fan Huang ◽  
Fu Cheng Zhang ◽  
Li He Qian

In the present study, the effects of ausforming on the bainitic transformation, microstructure and mechanical properties of a low-carbon rich-silicon carbide-free bainitic steel have been investigated. Results show that prior ausforming shortens both the incubation period and finishing time of bainitic transformation during isothermal treatment at a temperature slightly above the Mspoint. The thicknesses of bainitic ferrite laths are reduced appreciably by ausforming; however, ausforming increases the amount of large blocks of retained austenite/martenisite and decreases the volume fraction of retained austenite. And accordingly, ausforming gives rise to significant increases in both yield and tensile strengths, but causes noticeable decreases in ductility and impact toughness.


2012 ◽  
Vol 152-154 ◽  
pp. 376-380 ◽  
Author(s):  
Long Fei Zuo ◽  
Zhan Lei Wei ◽  
Ri Ni ◽  
Ben Ma ◽  
Zi Dong Wang

A kind of 1000MPa low carbon bainitic steel belonged to the Fe-Cu-Nb series was hot rolled and aged, the influence of aging temperatures on the microstructure and mechanical properties of the steel were investigated by using Scanning electron microscopy (SEM) and transmission electron microscopy(TEM). The results show that the microstructure of the low carbon bainitic steel consisted of lath-shaped bainite(LB), granular bainite(GB) and quasi-polygonal ferrite(QF), and the proportion of each kind of microstructure changed with the aging temperatures. The strength of steel with the increase of aging temperature first increased, then decreased, Aging temperatures had distinct effect on yield strength of the tested steel, and less effect on the ultimate tensile strength, we can get the best comprehensive properties yield strength 1011.87 MPa and elongation rate 16.38% of good tough match aged at 450°C. Through analysis it is concluded that the strength of the tested steels aged at 450°C reaches the maximum value, which is attributed to the precipitation of a large amount of fine ε-Cu particles(5~10nm) and a small number of(Nb,Ti)(C,N) precipitates.


2012 ◽  
Vol 39 ◽  
pp. 264-268 ◽  
Author(s):  
Lihe Qian ◽  
Qian Zhou ◽  
Fucheng Zhang ◽  
Jiangying Meng ◽  
Ming Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document