Numerical simulation study for efficiency enhancement of doubly graded perovskite solar cell

2021 ◽  
Vol 118 ◽  
pp. 111285
Author(s):  
Sagar Bhattarai ◽  
Arvind Sharma ◽  
Deboraj Muchahary ◽  
Dipankar Gogoi ◽  
T.D. Das
Optik ◽  
2021 ◽  
pp. 167492
Author(s):  
Sagar Bhattarai ◽  
Arvind Sharma ◽  
Deboraj Muchahary ◽  
Monika Gogoi ◽  
T.D. Das

2021 ◽  
Vol 34 (1) ◽  
pp. 01-08
Author(s):  
B GopalKrishna ◽  
Sanjay Tiwari

Perovskite solar cells are emerging photovoltaic devices with PCE of above 25%. Perovskite are suitable light absorber materials in solar cells with excellent properties like appropriate band gap energy, long carrier lifetime and diffusion length, and high extinction coefficient. Simulation study is an important technique to understand working mechanisms of perovskites solar cells. The study would help develop efficient, stable PSCs experimentally. In this study, modeling of perovskite solar cell was carried out through Setfos software. The optimization of different parameters of layer structure of solar cell would help to achieve maximum light absorption in the perovskite layer of solar cell. Simulation study is based drift-diffusion model to study the different parameters of perovskite solar cell. Hysteresis is one of the factors in the perovskite solar cell which may influence the device performance. The measurement of abnormal hysteresis can be done by current-voltage curve during backward scan during simulation study. In backward scan, the measurement starts from biasing voltage higher than open circuit voltage and sweep to voltage below zero. The numerical simulation used to study the various parameters like open circuit voltage, short circuit current, fill factor, power conversion efficiency and hysteresis. The simulation results would help to understand the photophysics of solar cell physics which would help to fabricate highly efficient and stable perovskite solar cells experimentally.


Solar Energy ◽  
2019 ◽  
Vol 181 ◽  
pp. 372-378 ◽  
Author(s):  
Faiza Azri ◽  
Afak Meftah ◽  
Nouredine Sengouga ◽  
Amjad Meftah

2019 ◽  
Vol 14 (10) ◽  
pp. 1075-1078
Author(s):  
Yunyan Liu ◽  
Shutao Li ◽  
Shuo Wang ◽  
Dong Zhao ◽  
Rendong Wang ◽  
...  

2021 ◽  
Vol 24 (3) ◽  
pp. 341-347
Author(s):  
K. Bhavsar ◽  
◽  
P.B. Lapsiwala ◽  

Perovskite solar cells have become a hot topic in the solar energy device area due to high efficiency and low cost photovoltaic technology. However, their function is limited by expensive hole transport material (HTM) and high temperature process electron transport material (ETM) layer is common device structure. Numerical simulation is a crucial technique in deeply understanding the operational mechanisms of solar cells and structure optimization for different devices. In this paper, device modelling for different perovskite solar cell has been performed for different ETM layer, namely: TiO2, ZnO, SnO2, PCBM (phenyl-C61-butyric acid methyl ester), CdZnS, C60, IGZO (indium gallium zinc oxide), WS2 and CdS and effect of band gap upon the power conversion efficiency of device as well as effect of absorber thickness have been examined. The SCAPS 1D (Solar Cell Capacitance Simulator) has been a tool used for numerical simulation of these devices.


Optik ◽  
2020 ◽  
Vol 202 ◽  
pp. 163646 ◽  
Author(s):  
Jaya Madan ◽  
Sparsh Garg ◽  
Kartavya Gupta ◽  
Shivam Rana ◽  
Aanchal Manocha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document