Optimization and fabrication of low cost Cu2SnS3/ZnS thin film heterojunction solar cell using ultrasonic spray pyrolysis

2022 ◽  
Vol 123 ◽  
pp. 111838
Author(s):  
Sabina Rahaman ◽  
M. Anantha Sunil ◽  
Monoj Kumar Singha ◽  
Kaustab Ghosh
2011 ◽  
Vol 20 (3) ◽  
pp. 037306 ◽  
Author(s):  
Bao-Chen Jiao ◽  
Xiao-Dan Zhang ◽  
Chang-Chun Wei ◽  
Jian Sun ◽  
Jian Ni ◽  
...  

2019 ◽  
Vol 10 ◽  
pp. 2396-2409
Author(s):  
Jako S Eensalu ◽  
Atanas Katerski ◽  
Erki Kärber ◽  
Lothar Weinhardt ◽  
Monika Blum ◽  
...  

The integration of photovoltaic (PV) solar energy in zero-energy buildings requires durable and efficient solar windows composed of lightweight and semitransparent thin film solar cells. Inorganic materials with a high optical absorption coefficient, such as Sb2S3 (>105 cm−1 at 450 nm), offer semitransparency, appreciable efficiency, and long-term durability at low cost. Oxide-free throughout the Sb2S3 layer thickness, as confirmed by combined studies of energy dispersive X-ray spectroscopy and synchrotron soft X-ray emission spectroscopy, semitransparent Sb2S3 thin films can be rapidly grown in air by the area-scalable ultrasonic spray pyrolysis method. Integrated into a ITO/TiO2/Sb2S3/P3HT/Au solar cell, a power conversion efficiency (PCE) of 5.5% at air mass 1.5 global (AM1.5G) is achieved, which is a record among spray-deposited Sb2S3 solar cells. An average visible transparency (AVT) of 26% of the back-contact-less ITO/TiO2/Sb2S3 solar cell stack in the wavelength range of 380–740 nm is attained by tuning the Sb2S3 absorber thickness to 100 nm. In scale-up from mm2 to cm2 areas, the Sb2S3 hybrid solar cells show a decrease in efficiency of only 3.2% for an 88 mm2 Sb2S3 solar cell, which retains 70% relative efficiency after one year of non-encapsulated storage. A cell with a PCE of 3.9% at 1 sun shows a PCE of 7.4% at 0.1 sun, attesting to the applicability of these solar cells for light harvesting under cloud cover.


Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 915 ◽  
Author(s):  
Ibrahim Dundar ◽  
Marina Krichevskaya ◽  
Atanas Katerski ◽  
Malle Krunks ◽  
Ilona Oja Acik

In this study, we deposited TiO2 thin films onto borosilicate glass by ultrasonic spray pyrolysis at 350 and 450 °C. The aim of study is to determine the effect of deposition temperature on photocatalytic activity of TiO2 thin films and to investigate the performance of TiO2 thin films on photocatalytic degradation of methyl tert-butyl ether (MTBE), acetone, acetaldehyde, and heptane as functions of different operating parameters. TiO2 thin films deposited at 350 and 450 °C have a thickness value of 190 and 330 nm, respectively. All as-prepared TiO2 films possess an anatase crystalline structure. According to the X-ray photon spectroscopy (XPS) study, the TiO2 thin film deposited at 350 °C showed a higher amount of oxygen vacancies and hydroxyl groups on the film surface after UV treatment. The aged-TiO2 thin film deposited at 350 °C showed a water contact angle (WCA) value of 0° after 10 min UV irradiation, showing superhydrophilic surface behavior. The TiO2 film deposited at 350 °C exhibited the highest amount of conversion of MTBE (100%). The results also showed that TiO2 films are capable of photocatalytic degradation of MTBE (100%) and acetaldehyde (approx. 80%) in humid air conditions and high airflow rate. The visible-light-activity of TiO2 thin films was tested with 5 ppm MTBE and acetone. TiO2 thin films deposited at 350 °C with a surface area of 600 cm2 showed 60% of MTBE and 33% of acetone degradation under VIS light.


2021 ◽  
Vol 23 (09) ◽  
pp. 1196-1206
Author(s):  
C.S.A. Raj ◽  
◽  
S. Sebastian ◽  
Susai Rajendran ◽  
◽  
...  

Cu2ZnSnS4 generally abridged as CZTS is a potential material for economical thin film solar cells, due to its appropriate band gap energy of around 1.5 eV and great absorption coefficient of above 104 cm-1. All the constituents of this material are plentiful in the earth’s crust, and they are non-hazardous making it an elegant alternative. Subsequent to the early achievement of the CZTS based solar cell with its light to electrical conversion efficiency of 0.6%, significant advancement in this research area has been attained, particularly in the last seven years. Currently, the conversion effectiveness of the CZTS thin film solar cell has enhanced to 24%. More than 500 papers on CZTS have been available and the greater part of these converses the preparation of CZTS thin films by diverse methods. Until now, many physical and chemical methods have been engaged for preparing CZTS thin films. Amongst them, spray pyrolysis is a flexible deposition technique. Spray pyrolysis is a simple deposition technique that finds use in widespread areas of thin film deposition research. This method is appropriate for depositing good quality films with low cost, clean deposition, and simplicity and flexibility in the manufacturing design. This script, reviews the synthesis of CZTS semiconductor thin films deposited by spray pyrolysis. This analysis initiates with a portrayal of the spray pyrolysis system, and then establish the CZTS and preparation of the CZTS precursor for coating. A review of spray pyrolysis of CZTS thin films are discussed in detail. To conclude, we present perspectives for advancements in spray pyrolysis for a CZTS based solar cell absorber layer.


Sign in / Sign up

Export Citation Format

Share Document