airflow rate
Recently Published Documents


TOTAL DOCUMENTS

519
(FIVE YEARS 201)

H-INDEX

29
(FIVE YEARS 4)

Author(s):  
Chuanqi Wang ◽  
Junjie Qiao ◽  
Yijia Song ◽  
Qi Yang ◽  
Dazhi Wang ◽  
...  

Abstract Nitric oxide (NO) is one of the most crucial products in the plasma-based nitrogen fixation process. In this work, in-situ measurements were performed for quantifying the NO synthesis spatially in a warm air glow discharge, through the method of Mid-infrared quantum cascade laser absorption spectroscopy (QCL-AS). Two ro-vibrational transitions at 1900.076 cm-1 and 1900.517 cm-1 of the ground-state NO(X) were probed sensitively by the help of the wavelength modulation spectroscopy (WMS) approach to increase the signal/noise (S/N) level. The results show a decline trend of NO synthesis rate along the discharge channel from the cathode to the anode. However, from the point of energy efficiency, the cathode region is of significantly low energy efficiency of NO production. Severe disproportionality was found for the high energy consumption but low NO production in the region of cathode area, compared to that in the positive column zone. Further analysis demonstrates the high energy cost of NO production in the cathode region, is ascribed to the extremely high reduced electric field E/N therein not selectively preferable for the processes of vibrational excitation or dissociation of N2 and O2 molecules. This drags down the overall energy efficiency of NO synthesis by this typical warm air glow discharge, particularly for the ones with short electrode gaps. Limitations of further improving the energy cost of NO synthesis by variations of the discharge operation conditions, such as discharge current or airflow rate, imply other effective manners able to tune the energy delivery selectively to the NO formation process, are sorely needed.


2022 ◽  
Vol 12 (1) ◽  
pp. 520
Author(s):  
Charles Berville ◽  
Florin Bode ◽  
Cristiana Croitoru

Transpired solar collectors (TSC) are one of the most popular solar thermal technologies for building façades. TSC use solar energy to heat the absorber surface, which transmits thermal energy to the ambient air. A variant of TSC, namely, a double skin transpired solar collector (DSTSC), has been analyzed in this paper, thus providing guide values and a technical point of view for engineers, architects, and constructors when designing such transpired solar collectors. Three important parameters were addressed in this study through numerical simulation: the influence of a separation plate introduced in a TSC, turning it into a DSTSC; the air layer thickness influence on the performance of the collector; and the influence of the used absorber materials for the separation plate material. Greater heat exchange efficiency was noticed for the DSTSC at every imposed airflow rate compared with the TSC. Regarding the thickness of the collector, the efficiency gradually increased when increasing the solar collector thickness until it reached a value of 20 cm, though not varying significantly at a thickness of 30 cm.


2022 ◽  
Vol 1217 (1) ◽  
pp. 012016
Author(s):  
Z Hassan ◽  
M S Misaran ◽  
N J Siambun ◽  
M Adzrie

Abstract This experimental study aimed to determine the effect of airflow velocity on the performance of a direct evaporative cooling system. Rectangular-shaped honeycomb cooling pads with a length of 34 cm, a width of 25 cm, and a thickness of 3.5 cm are used as cooling media. The main parameters of the study are low air velocity (2.3 ms−1), medium (3.2 ms−1), and high velocity (3.7 ms−1). The data collected include dry bulb temperature, wet bulb temperature, output air temperature, input and output air velocity, input and output humidity, and solar radiation. These data are used to determine saturation efficiency, cooling capacity, temperature decreases, and feasibility index. The experimental results are presented in the form of tables and graphs and analysed based on existing theories. The results showed that the evaporative cooling system could produce output temperatures up to 27.5°C with input 31.4°C at low airspeed, 27.97°C with input 31.47oC at medium speed, and 27.7°C with input 31.30°C at high air speed. It was concluded that a low airflow rate would add to the cooling efficiency, and the higher the airflow rate, the lower the cooling efficiency. The results showed that evaporative cooling is achievable with a feasibility index of 19.89 ≤ F*≤ 20.67. The results also affirmed that cooling capability is higher where the feasibility indexes are comparatively low.


2021 ◽  
pp. 123-132
Author(s):  
Bohdan Komarov ◽  
Dmitriy Zinchenko

Fan wing concept increased the efficiency of using the kinetic energy of the movement of air that flows around the wing. It allow generate thrust and lifting forces. But this scheme also has drawbacks. The most important associated with the significant drag force. The large diameter of the cross-flow fan, in case of failure of the power plant, the aerodynamic quality will be approximately 1: 3. To improve parameters and increase the feasibility of using this scheme, we need to review the existing concepts and change the basic geometric parameters of the cross-flow fan and try to reduce the diameter. It is advisable to increase the speed of its rotation. This work performed calculation and compare lift force and thrust force generated by the system. Compare various positions of the blades, and airflow rate at the outlet of the engine by numerical simulation. Also studied the effect of the profile shape of the blades and their amounts on the performance. As a result, analysis of the interaction of all these parameters to determine the model with the best aerodynamic performance. Numerical modeling turned out to be very resource-intensive. So the main focus on a series of physical experiments with real models. The results show that this scheme has more benefits when compared with before use. So, the proposed idea has good prospects for development and application.


2021 ◽  
pp. 1-18
Author(s):  
Catherine Baxevanou ◽  
Dimitrios Fidaros ◽  
Aris Tsangrassoulis

Passive solar systems, such as the Trombe wall, are cost-effective ways to reduce the energy consumption of buildings for heating, cooling, and ventilation. The operation of these systems can be simulated either with Building Energy Simulation Tools—BES like TRNSYS, EnergyPlus, etc either with Computational Fluid Dynamics—CFD. In both cases, the purchase of special software and/or special programming skills are required. In parallel analytical calculating tools are being developed, which also require some programming to solve an implicit system of non-linear equations but with fewer software requirements. The majority of analytical models concerns energy balance models for steady-state conditions with the result that heat storage is not taken into account, which in the case of a Trombe wall has a significant effect on the developed transport phenomena. In the present work, an analytical energy balance implicit model was developed for the simulation of the transient operation of a Trombe wall taking into account the heat storage. Using this model, the operation of a Trombe wall for 7 typical days of the year was simulated. The results are presented in terms of the daily evolution of the temperature with which the air enters the room served by the passive system, of the temperature of the Trombe wall surface adjacent to the served room, and of the airflow rate inside the air gap. These results are compared with the results that a system without heat storage would give. Both systems are assessed based on annual performance as calculated by a quasi-steady explicit model. The developed model can be used to calculate the operation of a Trombe wall as well as to supply explicit quasi-steady models with values for airflow rate inside the air gap for Trombe wall operation without mechanical ventilation. Feeding these values to a quasi-steady model developed by authors it was found that the increase of storage wall heat capacity, either changing the storage wall material, either using phase change materials, can offer better utilization of Trombe wall heat gains up to 35% yearly. Background: The present work aims to develop an analytical model for simulating the operation of a Trombe wall in a transient state taking into account the heat storage in the wall. Methods: A closed system of equations is developed, based on 5 energy balances and a series of assumptions and auxiliary relations, to calculate the operation of a wall Trombe with heat storage with an hourly time step. Results: Characteristics Trombe wall temperatures and mass flow rate through the air gap are calculated for typical days of 7 winter months. These are used for the calculation of utilizable heat gains from Trombe wall. Conclusions: The model that does not take into account heat storage predicts higher temperatures and air mass flow rate in the gap than the present model by 10%. However heat storage increase the utilizable heat gains by 35% compared with a system without heat storage.


2021 ◽  
pp. 123-141
Author(s):  
O. O. Oniya ◽  
C. O. Olatunji ◽  
M. I. Olatunji ◽  
K. O. Aremu ◽  
O. A. Adeiza

In this work, we investigate effect of particle size and transparent solar dryer cover on the proximate analysis of dried onion. A solar drying unit was developed and constructed for drying the of red onion slices in order to determine the proximate composition of fresh and dried red onion using multi-crop direct solar dryer. Also, the evaluation and effect of particles size and multi-crop transparent solar dryer cover on the proximate analysis of red onion during drying. Consequently, the higher efficiency of the solar collector was obtained at the higher airflow rate. The moisture content of dried onion slices was strongly affected by the thickness of the onion slices and the density of the polyethylene. The final moisture content of dried onion slices ranged from 10.85% to 13.01%, 4.95% to 6.01% ash, 4.69% to 5.26% fibre, 11.17% to 13.09% fat, 6.70% to 5.60% protein and 68.64% to 68.03% carbohydrate for particle sizes of 3 mm, 5 mm and 7 mm dry-basis depending on drying temperature cycle for low density polyethylene cover. While the final moisture content of dried onion slices ranged from 9.85% to 12.01%, 5.96% to 6.01% ash, 3.69% to 4.26% fibre, 13.17% to 12.09% fat, 5.70% to 6.60% protein and 61.64% to 58.03% carbohydrate for particle sizes of 3 mm, 5mm and 7mm dry-basis depending on drying temperature cycle for high density polyethylene cover.


2021 ◽  
Vol 11 (24) ◽  
pp. 11816
Author(s):  
Bruno Lebre ◽  
Pedro D. Silva ◽  
Luís C. Pires ◽  
Pedro D. Gaspar

The need for production of all kinds of crops in high quantities and over the entire year makes the agricultural sector one of the major energy consumers. The optimization of this consumption is essential to guarantee its sustainability. The implementation of greenhouses is a strategy that allows assurance of production needs and possesses large optimization potential for the process. This article studies different greenhouse structures by computational simulation using EnergyPlus and DesignBuilder. First, a comparison was performed between the computational results and the measured values from a greenhouse prototype at different operating conditions. Overall, the comparison shows that the computational tool can provide a reasonable prediction of the greenhouse thermal behavior, depending on the differences between the weather data modeled and observed. An outdoor air temperature difference of 16 °C can cause a difference of about 10 °C between the air temperature predicted and measured inside the greenhouse. Subsequently, a selected set of case studies was developed in order to quantify their influence on the thermal performance of the greenhouse, namely: the greenhouse configuration and orientation; the variation of indoor air renewal; changes to the characteristics of the roof; the effect of the thermal mass of the walls; and location of the greenhouse. The results show that a correct greenhouse orientation, together with a polyethylene double cover with a 13 mm air layer, a granite wall of 40 cm thickness on the north wall, and variable airflow rate, may lead to a reduction of the greenhouse energy consumption by 57%, if the greenhouse is located in Lisbon, or by 43%, if it is located in Ostersund, during the hottest months of the heating season.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8271
Author(s):  
Mariusz T. Sarniak

This paper proposes a modification to the design of a standard PV module by enclosing the skeleton space and using forced ventilation. The purpose of this research was to develop a method for calculating the amount of heat gained during PV module cooling. A simplifying assumption was to omit the electrical energy consumed by the fans forcing the airflow. For testing at low irradiance, a prototype halogen radiation simulator of our own design was used, which is not a standardized radiation source used for testing PV modules. Two measurements were also made under natural, stable solar radiation. The modified PV module was tested for three ventilation rates and compared with the results obtained for the standard PV module. In all tested cases, an increase in electrical efficiency of about 2% was observed with increasing radiation intensity. The thermal efficiency decreased by about 5% in the analyzed cases and the highest value of 10.47% was obtained for the highest value of cooling airflow rate. In conclusion, the study results represent a certain compromise: an increase in electrical efficiency with a simultaneous decrease in thermal efficiency.


2021 ◽  
Author(s):  
Rajat Arora ◽  
Ramraj H. Sundararaj ◽  
T. Chandra Sekar ◽  
Abhijit Kushari

Abstract Turbines remain one of the most efficient devices for extracting energy from a flowing fluid. In a gas turbine engine, axial flow turbines are used to extract energy from the working fluid and drive the compressor, to which they are mechanically connected. To maximize the performance of the axial flow turbine, it is necessary to carry out a design optimization of the components while suitably accounting for losses generated by secondary flows. An axial flow turbine rig is designed, fabricated, and installed to better understand and improve upon secondary flow models used in design procedures. The rig is driven by a blower operating at a constant speed, capable of delivering a maximum airflow rate of 0.4 kg/s and a maximum pressure rise of 500 mbar across the device. The axial flow turbine is mechanically connected to a dynamometer capable of operating at a full load capacity of 5 kW and a maximum rotational speed of 10,000 RPM. The axial flow turbine, housed between the blower and dynamometer, consists of nozzle guide vanes followed by a rotor. The design pressure ratio is chosen as 1.04, based on the blower delivery conditions and dynamometer specifications. For an initial design, a low-pressure ratio low rotor speed design was selected, allowing for easy installation and testing of the rotating components. The design space for the axial flow turbine was generated by varying flow and geometrical parameters in suitable steps, using a program written in MATLAB 2020a. Using the input variables and applying free vortex theory for three-dimensional blade design, the aerodynamic design of the axial flow turbine was carried out. The axial flow turbine design is experimentally tested with suitable pressure measurements at every station. Experiments are conducted for four different air mass flow rates. At each air mass flow, the rotor speed is varied by increasing/decreasing the dynamometer load. The data is recorded and compared with the design point. The difference between the design and measured performance parameters is observed to be within acceptable limits.


2021 ◽  
Vol 65 (4) ◽  
pp. 47-56
Author(s):  
A. Kočišová ◽  
Z. Kasičová ◽  
M. Halán ◽  
P. Komorová

Abstract Within the scope of our research, we have performed 59 trapping sessions and collected 15,756 biting midges from 20 species at four farms (Kluknava, Ostrov, Turňa nad Bodovou and Zemplínska Teplica), The most frequent types of captured insects were representatives of the Avaritia subgenus, C. obsoletus/C. scoticus, representing on average 85.1 % (13,295 individuals) of the fauna of the biting midges, with the exception of the farm in Ostrov where this group represented only 41.7 % of the fauna. At this particular farm, the most frequently trapped insects belonged to the Culicoides subgenus (54.1 %), in particular the C. bysta, C. lupicaris, C. newsteadi, C. Pulicaris and C. Punctatus species. During the trapping sessions, we monitored factors affecting the number of trapped biting midges, such as the temperature, relative air humidity and airflow rate: the air temperature during the trapping of the biting midges ranged from 9.8 to 26.2 °C; the relative air humidity ranged from 35.1 to 100 %; and the air flow rate ranged from no wind to a wind velocity of 8.2 m.s-1. However, in the final evaluation, we failed to observe a statistically significant correlation between the air flow and the number of trapped biting midges. The largest amounts of biting midges were trapped at temperatures ranging from 15.8 to 24.6 °C and at a relative air humidity ranging from 54.2 % to 68.6 %. While monitoring the seasonal dynamics of the physiological conditions of biting midge females at the selected farms, we confirmed that during the period from June to August, the most frequently trapped females were parous (50.1 %; 7,826 individuals). In addition, nulliparous females comprised 43.8 % (6,842 individuals) and were continuously trapped throughout the season (April— November).


Sign in / Sign up

Export Citation Format

Share Document