ultrasonic spray pyrolysis
Recently Published Documents


TOTAL DOCUMENTS

931
(FIVE YEARS 158)

H-INDEX

53
(FIVE YEARS 9)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 73
Author(s):  
Duygu Yeşiltepe Özcelik ◽  
Burçak Ebin ◽  
Srecko Stopic ◽  
Sebahattin Gürmen ◽  
Bernd Friedrich

Mixed oxides have received remarkable attention due to the many opportunities to adjust their interesting structural, electrical, catalytic properties, leading to a better, more useful performance compared to the basic metal oxides. In this study, mixed oxides NiO/ZnO/Al2O3 were synthesized in a single step via the ultrasonic spray pyrolysis method using nitrate salts, and the temperature effects of the process were investigated (400, 600, 800 °C). The synthesized samples were characterized by means of scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction and Raman spectroscopy analyses. The results showed Al2O3, NiO–Al2O3 and ZnO–Al2O3 systems with spinel phases. Furthermore, the Raman peaks supported the coexistence of oxide phases, which strongly impact the overall properties of nanocomposite.


2022 ◽  
Vol 137 ◽  
pp. 106209
Author(s):  
Jako S. Eensalu ◽  
Kaia Tõnsuaadu ◽  
Ilona Oja Acik ◽  
Malle Krunks

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 22
Author(s):  
Miroslava Varničić ◽  
Miroslav M. Pavlović ◽  
Sanja Eraković Pantović ◽  
Marija Mihailović ◽  
Marijana R. Pantović Pavlović ◽  
...  

Hybrid nanomaterials based on manganese, cobalt, and lanthanum oxides of different morphology and phase compositions were prepared using a facile single-step ultrasonic spray pyrolysis (USP) process and tested as electrocatalysts for oxygen reduction reaction (ORR). The structural and morphological characterizations were completed by XRD and SEM-EDS. Electrochemical performance was characterized by cyclic voltammetry and linear sweep voltammetry in a rotating disk electrode assembly. All synthesized materials were found electrocatalytically active for ORR in alkaline media. Two different manganese oxide states were incorporated into a Co3O4 matrix, δ-MnO2 at 500 and 600 °C and manganese (II,III) oxide-Mn3O4 at 800 °C. The difference in crystalline structure revealed flower-like nanosheets for birnessite-MnO2 and well-defined spherical nanoparticles for material based on Mn3O4. Electrochemical responses indicate that the ORR mechanism follows a preceding step of MnO2 reduction to MnOOH. The calculated number of electrons exchanged for the hybrid materials demonstrate a four-electron oxygen reduction pathway and high electrocatalytic activity towards ORR. The comparison of molar catalytic activities points out the importance of the composition and that the synergy of Co and Mn is superior to Co3O4/La2O3 and pristine Mn oxide. The results reveal that synthesized hybrid materials are promising electrocatalysts for ORR.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2256
Author(s):  
Žiga Jelen ◽  
Domen Kandare ◽  
Luka Lešnik ◽  
Rebeka Rudolf

An ultrasonic spray pyrolysis (USP) device consists of an evaporation and two reaction zones of equal length, into which an aerosol with a precursor compound enters, and where nanoparticles are formed in the final stage. As part of this research, we simulated the geometry of a side inlet, where the reaction gas (H2) enters into the reaction tube of the device by using numerical methods. Mixing with the carrier gas (N2) occurs at the entry of the H2. In the initial part, we performed a theoretical calculation with a numerical simulation using ANSYS CFX, while the geometries of the basic and studied models were prepared with Solidworks. The inlet geometry of the H2 included a study of the position and radius of the inlet with respect to the reaction tube of the USP device, as well as a study of the angle and diameter of the inlet. In the simulation, we chose the typical flows of both gases (N2, H2) in the range of 5 L/min to 15 L/min. The results show that the best geometry is with the H2 side inlet at the bottom, which the existing USP device does not allow for. Subsequently, temperature was included in the numerical simulation of the basic geometry with selected gas flows; 150 °C was considered in the evaporation zone and 400 °C was considered in the other two zones—as is the case for Au nanoparticle synthesis. In the final part, we performed an experiment on a USP device by selecting for the input parameters those that, theoretically, were the most appropriate—a constant flow of H2 5 L/min and three different N2 flows (5 L/min, 10 L/min, and 15 L/min). The results of this study show that numerical simulations are a suitable tool for studying the H2 flow in a UPS device, as the obtained results are comparable to the results of experimental tests that showed that an increased flow of N2 can prevent the backflow of H2 effectively, and that a redesign of the inlet geometry is needed to ensure proper mixing. Thus, numerical simulations using the ANSYS CFX package can be used to evaluate the optimal geometry for an H2 side inlet properly, so as to reconstruct the current and improve future USP devices.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Su Hyun Yang ◽  
Yun Jae Lee ◽  
Heemin Kang ◽  
Seung-Keun Park ◽  
Yun Chan Kang

AbstractTwo-dimensional (2D) MXenes are promising as electrode materials for energy storage, owing to their high electronic conductivity and low diffusion barrier. Unfortunately, similar to most 2D materials, MXene nanosheets easily restack during the electrode preparation, which degrades the electrochemical performance of MXene-based materials. A novel synthetic strategy is proposed for converting MXene into restacking-inhibited three-dimensional (3D) balls coated with iron selenides and carbon. This strategy involves the preparation of Fe2O3@carbon/MXene microspheres via a facile ultrasonic spray pyrolysis and subsequent selenization process. Such 3D structuring effectively prevents interlayer restacking, increases the surface area, and accelerates ion transport, while maintaining the attractive properties of MXene. Furthermore, combining iron selenides and carbon with 3D MXene balls offers many more sites for ion storage and enhances the structural robustness of the composite balls. The resultant 3D structured microspheres exhibit a high reversible capacity of 410 mAh g−1 after 200 cycles at 0.1 A g−1 in potassium-ion batteries, corresponding to the capacity retention of 97% as calculated based on 100 cycles. Even at a high current density of 5.0 A g−1, the composite exhibits a discharge capacity of 169 mAh g−1.


2021 ◽  
Vol 122 ◽  
pp. 111737
Author(s):  
R.M. Calderón-Olvera ◽  
M. García-Hipólito ◽  
O. Álvarez-Fregoso ◽  
M.A. Álvarez-Pérez ◽  
A. Báez-Rodriguez ◽  
...  

Author(s):  
Andre L. da Silva ◽  
Fabiane J. Trindade ◽  
Jean-Lou Dalmasso ◽  
Bruno Ramos ◽  
Antonio Carlos S.C. Teixeira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document